28 resultados para Moving Boundary
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.
Resumo:
In this paper, a new class of generalized backward doubly stochastic differential equations is investigated. This class involves an integral with respect to an adapted continuous increasing process. A probabilistic representation for viscosity solutions of semi-linear stochastic partial differential equations with a Neumann boundary condition is given.
Resumo:
Boundary equilibrium bifurcations in piecewise smooth discontinuous systems are characterized by the collision of an equilibrium point with the discontinuity surface. Generically, these bifurcations are of codimension one, but there are scenarios where the phenomenon can be of higher codimension. Here, the possible collision of a non-hyperbolic equilibrium with the boundary in a two-parameter framework and the nonlinear phenomena associated with such collision are considered. By dealing with planar discontinuous (Filippov) systems, some of such phenomena are pointed out through specific representative cases. A methodology for obtaining the corresponding bi-parametric bifurcation sets is developed.
Resumo:
We define the Jacobian of a Riemann surface with analytically parametrized boundary components. These Jacobians belong to a moduli space of "open abelian varieties" which satisfies gluing axioms similar to those of Riemann surfaces, and therefore allows a notion of "conformal field theory" to be defined on this space. We further prove that chiral conformal field theories corresponding to even lattices factor through this moduli space of open abelian varieties.
Resumo:
Near linear evolution in Korteweg de Vries (KdV) equation with periodic boundary conditions is established under the assumption of high frequency initial data. This result is obtained by the method of normal form reduction.
Resumo:
We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).
Resumo:
The work in this paper deals with the development of momentum and thermal boundary layers when a power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum and energy equations and an approximation technique which is a form of the Heat Balance Integral Method. The fluid properties are assumed to be independent of temperature, hence the momentum equation uncouples from the thermal problem. We first derive the similarity equations for the velocity and present exact solutions for the case where the power law index n = 2. The similarity solutions are used to validate the new approximation method. This new technique is then applied to the thermal boundary layer, where a similarity solution can only be obtained for the case n = 1.
Resumo:
During the last decade the interest on space-borne Synthetic Aperture Radars (SAR) for remote sensing applications has grown as testified by the number of recent and forthcoming missions as TerraSAR-X, RADARSAT-2, COSMO-kyMed, TanDEM-X and the Spanish SEOSAR/PAZ. In this sense, this thesis proposes to study and analyze the performance of the state-of-the-Art space-borne SAR systems, with modes able to provide Moving Target Indication capabilities (MTI), i.e. moving object detection and estimation. The research will focus on the MTI processing techniques as well as the architecture and/ or configuration of the SAR instrument, setting the limitations of the current systems with MTI capabilities, and proposing efficient solutions for the future missions. Two European projects, to which the Universitat Politècnica de Catalunya provides support, are an excellent framework for the research activities suggested in this thesis. NEWA project proposes a potential European space-borne radar system with MTI capabilities in order to fulfill the upcoming European security policies. This thesis will critically review the state-of-the-Art MTI processing techniques as well as the readiness and maturity level of the developed capabilities. For each one of the techniques a performance analysis will be carried out based on the available technologies, deriving a roadmap and identifying the different technological gaps. In line with this study a simulator tool will be developed in order to validate and evaluate different MTI techniques in the basis of a flexible space-borne radar configuration. The calibration of a SAR system is mandatory for the accurate formation of the SAR images and turns to be critical in the advanced operation modes as MTI. In this sense, the SEOSAR/PAZ project proposes the study and estimation of the radiometric budget. This thesis will also focus on an exhaustive analysis of the radiometric budget considering the current calibration concepts and their possible limitations. In the framework of this project a key point will be the study of the Dual Receive Antenna (DRA) mode, which provides MTI capabilities to the mission. An additional aspect under study is the applicability of the Digital Beamforming on multichannel and/or multistatic radar platforms, which conform potential solutions for the NEWA project with the aim to fully exploit its capability jointly with MTI techniques.
Resumo:
The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.
Resumo:
The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.