34 resultados para Mesoporous carbon
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane"s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.
Resumo:
A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W) microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane"s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter) dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.
Resumo:
RESUMEN El aumento del CO2 atmosférico debido al cambio global y/o a las prácticas hortícolas promueve efectos directos sobre crecimiento vegetal y el desarrollo. Estas respuestas pueden ocurrir en ecosistemas naturales, pero también se pueden utilizar para aumentar la producción de algunas plantas y de algunos compuestos secundarios. El actual trabajo intenta estudiar los efectos del enriquecimiento atmosférico del CO2 bajo condiciones de invernadero en el crecimiento y la concentración y la composición de metabolitos secundarios de Taxus bacatta, Hypericum perforatum y Echinacea purpurea en condiciones ambientales mediterráneas. La fertilización del CO2 muestra perspectivas interesantes para la mejorara y aplicabilidad de técnicas hortícolas para aumentar productividad de plantas medicinales, a pesar de diferencias claras entre la especie. En general esta técnica promueve aumentos importantes y significativos en producción primaria y, en algunos casos, también en compuestos secundarios. Esto tiene una gran importancia hortícola porque la productividad a nivel de cosecha total aumenta, directamente porque se aumenta la concentración e indirectamente porque se aumenta la biomasa. SUMMARY The increase of atmospheric CO2 due to global change and/or horticultural practices promotes direct effects on plant growth and development. These responses may occur in natural ecosystems, but also can be used to increase the production of some plants and some secondary compounds. Present work tries to study the effects of atmospheric CO2 enrichment under greenhouse conditions on growth and in the concentration and composition of secondary metabolites of Taxus bacatta, Hypericum perforatum and Echinacea purpurea under Mediterranean environmental conditions. CO2 fertilization shows interesting perspectives to increase and improve horticultural techniques in order to increase plant medicinal productivity, in spite of clear differences among the species. In general this technique promotes important and significant increases in primary productivity and, in some cases, also in secondary compounds. This has a great horticultural relevance because the total productivity of this kind of products increase at crop level, directly because concentration is increased and /or indirectly because biomass is increased. RESUM L'augment del CO2 atmosfèric a causa del canvi global i/o a les pràctiques hortícoles promou efectes directes sobre creixement vegetal i el desenvolupament. Aquestes respostes poden ocórrer en ecosistemes naturals, però també es poden utilitzar per a augmentar la producció d'algunes plantes i d'alguns compostos secundaris. L'actual treball intenta estudiar els efectes de l'enriquiment atmosfèric del CO2 sota condicions d'hivernacle en el creixement i la concentració i la composició de metabòlits secundaris de Taxus bacatta, Hypericum perforatum i Echinacea purpurea en condicions ambientals mediterrànies. La fertilització del CO2 mostra perspectives interessants per a la millora i aplicabilitat de tècniques hortícoles per a augmentar productivitat de plantes medicinals, a pesar de diferències clares entre l'espècie. En general aquesta tècnica promou augments importants i significatius en producció primària i, en alguns casos, també en compostos secundaris. Això té una gran importància hortícola perquè la productivitat a nivell de collita total augmenta, directament perquè s'augmenta la concentració i indirectament perquè s'augmenta la biomassa.
Resumo:
The empirical finding of an inverse U-shaped relationship between per capita income and pollution, the so-called Environmental Kuznets Curve (EKC), suggests that as countries experience economic growth, environmental deterioration decelerates and thus becomes less of an issue. Focusing on the prime example of carbon emissions, the present article provides a critical review of the new econometric techniques that have questioned the baseline polynomial specification in the EKC literature. We discuss issues related to the functional form, heterogeneity, “spurious” regressions and spatial dependence to address whether and to what extent the EKC can be observed. Despite these new approaches, there is still no clear-cut evidence supporting the existence of the EKC for carbon emissions. JEL classifications: C20; Q32; Q50; O13 Keywords: Environmental Kuznets Curve; Carbon emissions; Functional form; Heterogeneity; “Spurious” regressions; Spatial dependence.Residential satisfaction is often used as a barometer to assess the performance of public policy and programmes designed to raise individuals' well-being. However, the fact that responses elicited from residents might be biased by subjective, non-observable factors casts doubt on whether these responses can be taken as trustable indicators of the individuals' housing situation. Emotional factors such as aspirations or expectations might affect individuals' cognitions of their true residential situation. To disentangle this puzzle, we investigated whether identical residential attributes can be perceived differently depending on tenure status. Our results indicate that tenure status is crucial not only in determining the level of housing satisfaction, but also regarding how dwellers perceive their housing characteristics. Keywords: Housing satisfaction, subjective well-being, homeownership. JEL classification: D1, R2.
Development of an optimized methodology for tensile testing of carbon steels in hydrogen environment
Resumo:
The study was performed at OCAS, the Steel Research Centre of ArcelorMittal for the Industry market. The major aim of this research was to obtain an optimized tensile testing methodology with in-situ H-charging to reveal the hydrogen embrittlement in various high strength steels. The second aim of this study has been the mechanical characterization of the hydrogen effect on hight strength carbon steels with varying microstructure, i.e. ferrite-martensite and ferrite-bainite grades. The optimal parameters for H-charging - which influence the tensile test results (sample geometry type of electrolyte, charging methods effect of steel type, etc.) - were defined and applied to Slow Strain Rate testing, Incremental Step Loading and Constant Load Testing. To better understand the initiation and propagation of cracks during tensile testing with in-situ H-charging, and to make the correlation with crystallographic orientation, some materials have been analyzed in the SEM in combination with the EBSD technique. The introduction of a notch on the tensile samples permits to reach a significantly improved reproducibility of the results. Comparing the various steel grades reveals that Dual Phase (ferrite-martensite) steels are more sensitive to hydrogen induced cracking than the FB (ferritic-bainitic) ones. This higher sensitivity to hydrogen was found back in the reduced failure times, increased creep rates and enhanced crack initiation (SEM) for the Dual Phase steels in comparison with the FB steels.
Resumo:
The enhanced flow in carbon nanotubes is explained using a mathematical model that includes a depletion layer with reduced viscosity near the wall. In the limit of large tubes the model predicts no noticeable enhancement. For smaller tubes the model predicts enhancement that increases as the radius decreases. An analogy between the reduced viscosity and slip-length models shows that the term slip-length is misleading and that on surfaces which are smooth at the nanoscale it may be thought of as a length-scale associated with the size of the depletion region and viscosity ratio. The model therefore provides a physical interpretation of the classical Navier slip condition and explains why `slip-lengths' may be greater than the tube radius.
Resumo:
The main aim of this work is to define an environmental tax on products and services based on their carbon footprint. We examine the relevance of conventional life cycle analysis (LCA) and environmentally extended input-output analysis (EIO) as methodological tools to identify emission intensities of products and services on which the tax is based. The short-term price effects of the tax and the policy implications of considering non-GHG are also analyzed. The results from the specific case study on pulp production show that the environmental tax rate based on the LCA approach (1,8%) is higher than both EIO approaches (0,8% for product and 1,4% for industry approach), but they are comparable. Even though LCA is more product specific and provides detailed analysis, EIO would be the more relevant approach to apply economy wide environmental tax. When the environmental tax considers non-GHG emissions instead of only CO2, sectors such as agriculture, mining of coal and extraction of peat, and food exhibit higher environmental tax and price effects. Therefore, it is worthwhile for policy makers to pay attention on the implication of considering only CO2 tax or GHG emissions tax in order for such a policy measure to be effective and meaningful. Keywords: Environmental tax; Life cycle analysis; Environmental input-output analysis.
Resumo:
La infraestructura europea ICOS (Integrated Carbon Observation System), tiene como misión proveer de mediciones de gases de efecto invernadero a largo plazo, lo que ha de permitir estudiar el estado actual y comportamiento futuro del ciclo global del carbono. En este contexto, geomati.co ha desarrollado un portal de búsqueda y descarga de datos que integra las mediciones realizadas en los ámbitos terrestre, marítimo y atmosférico, disciplinas que hasta ahora habían gestionado los datos de forma separada. El portal permite hacer búsquedas por múltiples ámbitos geográficos, por rango temporal, por texto libre o por un subconjunto de magnitudes, realizar vistas previas de los datos, y añadir los conjuntos de datos que se crean interesantes a un “carrito” de descargas. En el momento de realizar la descarga de una colección de datos, se le asignará un identificador universal que permitirá referenciarla en eventuales publicaciones, y repetir su descarga en el futuro (de modo que los experimentos publicados sean reproducibles). El portal se apoya en formatos abiertos de uso común en la comunidad científica, como el formato NetCDF para los datos, y en el perfil ISO de CSW, estándar de catalogación y búsqueda propio del ámbito geoespacial. El portal se ha desarrollado partiendo de componentes de software libre existentes, como Thredds Data Server, GeoNetwork Open Source y GeoExt, y su código y documentación quedarán publicados bajo una licencia libre para hacer posible su reutilización en otros proyecto
Resumo:
This manuscript reports the study of the carbon-halide bond cleavage in 4-nitrobenzyl halides, taking special attention to the iodide and fluoride derivatives. The electrochemical reduction mechanism has been disclosed for both compounds by terms of cyclic voltammetry and controlled potential electrolysis. In the case of 4-nitrobenzyl iodide, a first one electron irreversible wave leads to the corresponding 4-nitrobenzyl radical and iodide. However, in the case of 4-nitrobenzyl fluoride, a first one-electron reversible wave appears at –1.02 vs. SCE followed by one electron irreversible wave. In this second electron transfer process, the cleavage of the C-F bond is taking place, so the bond cleavage reaction occurs at the dianion level. To disclose and understand the electrochemical reduction mechanisms that allows to obtain important thermodynamic and kinetic data that would help in the understanding of C-X bond cleavage. This type of bond dissociation reactions are involved in the metabolism pathways of the human body.
Resumo:
The optical absorption of hydrogenated amorphous carbon films (a‐C:H) was measured by spectroscopic ellipsometry. The a‐C:H films were deposited at different substrate temperatures by rf‐plasma of methane. A volume distribution of graphitic cluster size was assumed to reproduce the experimental spectra of the absorption coefficient. The changes in the absorption coefficient and the optical gap, induced by deposition temperature, have been interpreted in terms of changes in the graphitic cluster size of the network. The increase in the deposition temperature produces an increase in the size of the graphitic clusters.
Resumo:
Spherical carbon coated iron particles of nanometric diameter in the 510 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 58·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging MRI, hyperthermia).
Resumo:
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH4NO3) and high (HN, 15 mm NH4NO3) N conditions. We conducted simultaneous double labelling (12CO2 and 15NH415NO3) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUEtotal), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post-anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the"waste" of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.