22 resultados para Mesh generation from image data
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Context. The understanding of Galaxy evolution can be facilitated by the use of population synthesis models, which allow to test hypotheses on the star formation history, star evolution, as well as chemical and dynamical evolution of the Galaxy. Aims. The new version of the Besanc¸on Galaxy Model (hereafter BGM) aims to provide a more flexible and powerful tool to investigate the Initial Mass Function (IMF) and Star Formation Rate (SFR) of the Galactic disc. Methods. We present a new strategy for the generation of thin disc stars which assumes the IMF, SFR and evolutionary tracks as free parameters. We have updated most of the ingredients for the star count production and, for the first time, binary stars are generated in a consistent way. We keep in this new scheme the local dynamical self-consistency as in Bienayme et al (1987). We then compare simulations from the new model with Tycho-2 data and the local luminosity function, as a first test to verify and constrain the new ingredients. The effects of changing thirteen different ingredients of the model are systematically studied. Results. For the first time, a full sky comparison is performed between BGM and data. This strategy allows to constrain the IMF slope at high masses which is found to be close to 3.0, excluding a shallower slope such as Salpeter"s one. The SFR is found decreasing whatever IMF is assumed. The model is compatible with a local dark matter density of 0.011 M pc−3 implying that there is no compelling evidence for significant amount of dark matter in the disc. While the model is fitted to Tycho2 data, a magnitude limited sample with V<11, we check that it is still consistent with fainter stars. Conclusions. The new model constitutes a new basis for further comparisons with large scale surveys and is being prepared to become a powerful tool for the analysis of the Gaia mission data.
Resumo:
Context. The understanding of Galaxy evolution can be facilitated by the use of population synthesis models, which allow to test hypotheses on the star formation history, star evolution, as well as chemical and dynamical evolution of the Galaxy. Aims. The new version of the Besanc¸on Galaxy Model (hereafter BGM) aims to provide a more flexible and powerful tool to investigate the Initial Mass Function (IMF) and Star Formation Rate (SFR) of the Galactic disc. Methods. We present a new strategy for the generation of thin disc stars which assumes the IMF, SFR and evolutionary tracks as free parameters. We have updated most of the ingredients for the star count production and, for the first time, binary stars are generated in a consistent way. We keep in this new scheme the local dynamical self-consistency as in Bienayme et al (1987). We then compare simulations from the new model with Tycho-2 data and the local luminosity function, as a first test to verify and constrain the new ingredients. The effects of changing thirteen different ingredients of the model are systematically studied. Results. For the first time, a full sky comparison is performed between BGM and data. This strategy allows to constrain the IMF slope at high masses which is found to be close to 3.0, excluding a shallower slope such as Salpeter"s one. The SFR is found decreasing whatever IMF is assumed. The model is compatible with a local dark matter density of 0.011 M pc−3 implying that there is no compelling evidence for significant amount of dark matter in the disc. While the model is fitted to Tycho2 data, a magnitude limited sample with V<11, we check that it is still consistent with fainter stars. Conclusions. The new model constitutes a new basis for further comparisons with large scale surveys and is being prepared to become a powerful tool for the analysis of the Gaia mission data.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
An increasing number of studies have sprung up in recent years seeking to identify individual inventors from patent data. Different heuristics have been suggested to use their names and other information disclosed in patent documents in order to find out “who is who” in patents. This paper contributes to this literature by setting forth a methodology to identify them using patents applied to the European Patent Office (EPO hereafter). As in the large part of this literature, we basically follow a three-steps procedure: (1) the parsing stage, aimed at reducing the noise in the inventor’s name and other fields of the patent; (2) the matching stage, where name matching algorithms are used to group possible similar names; (3) the filtering stage, where additional information and different scoring schemes are used to filter out these potential same inventors. The paper includes some figures resulting of applying the algorithms to the set of European inventors applying to the EPO for a large period of time.
Resumo:
In this paper we face the problem of positioning a camera attached to the end-effector of a robotic manipulator so that it gets parallel to a planar object. Such problem has been treated for a long time in visual servoing. Our approach is based on linking to the camera several laser pointers so that its configuration is aimed to produce a suitable set of visual features. The aim of using structured light is not only for easing the image processing and to allow low-textured objects to be treated, but also for producing a control scheme with nice properties like decoupling, stability, well conditioning and good camera trajectory
Resumo:
Background: Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize between genes putatively involved in cancer, usually based on further analyzing experimental data. Results: We implemented a systematic method using the PIANA software that predicts cancer involvement of genes by integrating heterogeneous datasets. Specifically, we produced lists of genes likely to be involved in cancer by relying on: (i) protein-protein interactions; (ii) differential expression data; and (iii) structural and functional properties of cancer genes. The integrative approach that combines multiple sources of data obtained positive predictive values ranging from 23% (on a list of 811 genes) to 73% (on a list of 22 genes), outperforming the use of any of the data sources alone. We analyze a list of 20 cancer gene predictions, finding that most of them have been recently linked to cancer in literature. Conclusion: Our approach to identifying and prioritizing candidate cancer genes can be used to produce lists of genes likely to be involved in cancer. Our results suggest that differential expression studies yielding high numbers of candidate cancer genes can be filtered using protein interaction networks.
Resumo:
In this paper we study the disability transition probabilities (as well as the mortalityprobabilities) due to concurrent factors to age such as income, gender and education. Althoughit is well known that ageing and socioeconomic status influence the probability ofcausing functional disorders, surprisingly little attention has been paid to the combined effectof those factors along the individuals' life and how this affects the transition from one degreeof disability to another. The assumption that tomorrow's disability state is only a functionof the today's state is very strong, since disability is a complex variable that depends onseveral other elements than time. This paper contributes into the field in two ways: (1) byattending the distinction between the initial disability level and the process that leads tohis course (2) by addressing whether and how education, age and income differentially affectthe disability transitions. Using a Markov chain discrete model and a survival analysis, weestimate the probability by year and individual characteristics that changes the state of disabilityand the duration that it takes its progression in each case. We find that people withan initial state of disability have a higher propensity to change and take less time to transitfrom different stages. Men do that more frequently than women. Education and incomehave negative effects on transition. Moreover, we consider the disability benefits associatedto those changes along different stages of disability and therefore we offer some clues onthe potential savings of preventive actions that may delay or avoid those transitions. Onpure cost considerations, preventive programs for improvement show higher benefits thanthose for preventing deterioration, and in general terms, those focussing individuals below65 should go first. Finally the trend of disability in Spain seems not to change among yearsand regional differences are not found.
Resumo:
Using historical data for all Swiss cantons from 1890 to 2000, we estimate the causal effect of direct democracy on government spending. The main innovation in this paper is that we use fixed effects to control for unobserved heterogeneity and instrumental variables to address the potential endogeneity of institutions. We find that the budget referendum and lower costs to launch a voter initiative are effective tools in reducing canton level spending. However, we find no evidence that the budget referendum results in more decentralized government or a larger local government. Our instrumental variable estimates suggest that a mandatory budget referendum reduces the size of canton spending between 13 and 19 percent. A 1 percent lower signature requirement for the initiative reduces canton spending by up to 2 percent.
Resumo:
This paper examines factors explaining subcontracting decisions in the construction industry. Rather than the more common cross-sectional analyses, we use panel data to evaluate the influence of all relevant variables. We design and use a new index of the closeness to small numbers situations to estimate the extent of hold-up problems. Results show that as specificity grows, firms tend to subcontract less. The opposite happens when output heterogeneity and the use of intangible assets and capabilities increase. Neither temporary shortage of capacity nor geographical dispersion of activities seem to affect the extent of subcontracting. Finally, proxies for uncertainty do not show any clear effect.
Resumo:
We study the statistical properties of three estimation methods for a model of learning that is often fitted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood withand without unobserved heterogeneity. After discussing identification issues, we show that the estimators are consistent and provide their asymptotic distribution. Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties areobtained if unobserved heterogeneity is introduced. That is, rather than estimating the parameters for each individual, the individual parameters are considered random variables, and the distribution of those random variables is estimated.
Resumo:
To cosmic rays incident near the horizon the Earth's atmosphere represents a beam dump with a slant depth reaching 36 000 g cm-2 at 90. The prompt decay of a heavy quark produced by very high energy cosmic ray showers will leave an unmistakable signature in this dump. We translate the failure of experiments to detect such a signal into an upper limit on the heavy quark hadroproduction cross section in the energy region beyond existing accelerators. Our results disfavor any rapid growth of the cross section or the gluon structure function beyond conservative estimates based on perturbative QCD.
Resumo:
In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS) environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM) with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.
Resumo:
This article reports on a lossless data hiding scheme for digital images where the data hiding capacity is either determined by minimum acceptable subjective quality or by the demanded capacity. In the proposed method data is hidden within the image prediction errors, where the most well-known prediction algorithms such as the median edge detector (MED), gradient adjacent prediction (GAP) and Jiang prediction are tested for this purpose. In this method, first the histogram of the prediction errors of images are computed and then based on the required capacity or desired image quality, the prediction error values of frequencies larger than this capacity are shifted. The empty space created by such a shift is used for embedding the data. Experimental results show distinct superiority of the image prediction error histogram over the conventional image histogram itself, due to much narrower spectrum of the former over the latter. We have also devised an adaptive method for hiding data, where subjective quality is traded for data hiding capacity. Here the positive and negative error values are chosen such that the sum of their frequencies on the histogram is just above the given capacity or above a certain quality.
Resumo:
This letter presents a lossless data hiding scheme for digital images which uses an edge detector to locate plain areas for embedding. The proposed method takes advantage of the well-known gradient adjacent prediction utilized in image coding. In the suggested scheme, prediction errors and edge values are first computed and then, excluding the edge pixels, prediction error values are slightly modified through shifting the prediction errors to embed data. The aim of proposed scheme is to decrease the amount of modified pixels to improve transparency by keeping edge pixel values of the image. The experimental results have demonstrated that the proposed method is capable of hiding more secret data than the known techniques at the same PSNR, thus proving that using edge detector to locate plain areas for lossless data embedding can enhance the performance in terms of data embedding rate versus the PSNR of marked images with respect to original image.
Resumo:
An increasing number of studies in recent years have sought to identify individual inventors from patent data. A variety of heuristics have been proposed for using the names and other information disclosed in patent documents to establish who is who in patents. This paper contributes to this literature by describing a methodology for identifying inventors using patents applied to the European Patent Office, EPO hereafter. As in much of this literature, we basically follow a threestep procedure : 1- the parsing stage, aimed at reducing the noise in the inventor’s name and other fields of the patent; 2- the matching stage, where name matching algorithms are used to group similar names; and 3- the filtering stage, where additional information and various scoring schemes are used to filter out these similarlynamed inventors. The paper presents the results obtained by using the algorithms with the set of European inventors applying to the EPO over a long period of time.