49 resultados para Mean squares

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiexponential decays may contain time-constants differing in several orders of magnitudes. In such cases, uniform sampling results in very long records featuring a high degree of oversampling at the final part of the transient. Here, we analyze a nonlinear time scale transformation to reduce the total number of samples with minimum signal distortion, achieving an important reduction of the computational cost of subsequent analyses. We propose a time-varying filter whose length is optimized for minimum mean square error

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A unified and general vision of different space-time processors is presented. Many popular receivers can beaccomodated, like V-RAKE receivers, weighted V-RAKE, or spatial narrowband beamforming. By makingappropriate assumptions on the space/time characteristic of the interference it is possible to enhance theperformance of the receiver through spatial/temporal pre-processors. These receivers will be tested in the FDDmode of UTRA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study focuses on single-case data analysis and specifically on two procedures for quantifying differences between baseline and treatment measurements The first technique tested is based on generalized least squares regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The comparison is carried out in the context of generated data representing a variety of patterns (i.e., independent measurements, different serial dependence underlying processes, constant or phase-specific autocorrelation and data variability, different types of trend, and slope and level change). The results suggest that the two techniques perform adequately for a wide range of conditions and researchers can use both of them with certain guarantees. The regression-based procedure offers more efficient estimates, whereas the proposed non-regression procedure is more sensitive to intervention effects. Considering current and previous findings, some tentative recommendations are offered to applied researchers in order to help choosing among the plurality of single-case data analysis techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural equation models are widely used in economic, socialand behavioral studies to analyze linear interrelationships amongvariables, some of which may be unobservable or subject to measurementerror. Alternative estimation methods that exploit different distributionalassumptions are now available. The present paper deals with issues ofasymptotic statistical inferences, such as the evaluation of standarderrors of estimates and chi--square goodness--of--fit statistics,in the general context of mean and covariance structures. The emphasisis on drawing correct statistical inferences regardless of thedistribution of the data and the method of estimation employed. A(distribution--free) consistent estimate of $\Gamma$, the matrix ofasymptotic variances of the vector of sample second--order moments,will be used to compute robust standard errors and a robust chi--squaregoodness--of--fit squares. Simple modifications of the usual estimateof $\Gamma$ will also permit correct inferences in the case of multi--stage complex samples. We will also discuss the conditions under which,regardless of the distribution of the data, one can rely on the usual(non--robust) inferential statistics. Finally, a multivariate regressionmodel with errors--in--variables will be used to illustrate, by meansof simulated data, various theoretical aspects of the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper conducts an empirical analysis of the relationship between wage inequality, employment structure, and returns to education in urban areas of Mexico during the past two decades (1987-2008). Applying Melly’s (2005) quantile regression based decomposition, we find that changes in wage inequality have been driven mainly by variations in educational wage premia. Additionally, we find that changes in employment structure, including occupation and firm size, have played a vital role. This evidence seems to suggest that the changes in wage inequality in urban Mexico cannot be interpreted in terms of a skill-biased change, but rather they are the result of an increasing demand for skills during that period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kriging is an interpolation technique whose optimality criteria are based on normality assumptions either for observed or for transformed data. This is the case of normal, lognormal and multigaussian kriging.When kriging is applied to transformed scores, optimality of obtained estimators becomes a cumbersome concept: back-transformed optimal interpolations in transformed scores are not optimal in the original sample space, and vice-versa. This lack of compatible criteria of optimality induces a variety of problems in both point and block estimates. For instance, lognormal kriging, widely used to interpolate positivevariables, has no straightforward way to build consistent and optimal confidence intervals for estimates.These problems are ultimately linked to the assumed space structure of the data support: for instance, positive values, when modelled with lognormal distributions, are assumed to be embedded in the whole real space, with the usual real space structure and Lebesgue measure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantitative estimation of Sea Surface Temperatures from fossils assemblages is afundamental issue in palaeoclimatic and paleooceanographic investigations. TheModern Analogue Technique, a widely adopted method based on direct comparison offossil assemblages with modern coretop samples, was revised with the aim ofconforming it to compositional data analysis. The new CODAMAT method wasdeveloped by adopting the Aitchison metric as distance measure. Modern coretopdatasets are characterised by a large amount of zeros. The zero replacement was carriedout by adopting a Bayesian approach to the zero replacement, based on a posteriorestimation of the parameter of the multinomial distribution. The number of modernanalogues from which reconstructing the SST was determined by means of a multipleapproach by considering the Proxies correlation matrix, Standardized Residual Sum ofSquares and Mean Squared Distance. This new CODAMAT method was applied to theplanktonic foraminiferal assemblages of a core recovered in the Tyrrhenian Sea.Kew words: Modern analogues, Aitchison distance, Proxies correlation matrix,Standardized Residual Sum of Squares

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is almost not a case in exploration geology, where the studied data doesn’tincludes below detection limits and/or zero values, and since most of the geological dataresponds to lognormal distributions, these “zero data” represent a mathematicalchallenge for the interpretation.We need to start by recognizing that there are zero values in geology. For example theamount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-existswith nepheline. Another common essential zero is a North azimuth, however we canalways change that zero for the value of 360°. These are known as “Essential zeros”, butwhat can we do with “Rounded zeros” that are the result of below the detection limit ofthe equipment?Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimeswe need to differentiate between a sodic and a potassic alteration. Pre-classification intogroups requires a good knowledge of the distribution of the data and the geochemicalcharacteristics of the groups which is not always available. Considering the zero valuesequal to the limit of detection of the used equipment will generate spuriousdistributions, especially in ternary diagrams. Same situation will occur if we replace thezero values by a small amount using non-parametric or parametric techniques(imputation).The method that we are proposing takes into consideration the well known relationshipsbetween some elements. For example, in copper porphyry deposits, there is always agood direct correlation between the copper values and the molybdenum ones, but whilecopper will always be above the limit of detection, many of the molybdenum values willbe “rounded zeros”. So, we will take the lower quartile of the real molybdenum valuesand establish a regression equation with copper, and then we will estimate the“rounded” zero values of molybdenum by their corresponding copper values.The method could be applied to any type of data, provided we establish first theircorrelation dependency.One of the main advantages of this method is that we do not obtain a fixed value for the“rounded zeros”, but one that depends on the value of the other variable.Key words: compositional data analysis, treatment of zeros, essential zeros, roundedzeros, correlation dependency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stone groundwood (SGW) is a fibrous matter commonly prepared in a high yield process, and mainly used for papermaking applications. In this work, the use of SGW fibers is explored as reinforcing element of polypropylene (PP) composites. Due to its chemical and superficial features, the use of coupling agents is needed for a good adhesion and stress transfer across the fiber-matrix interface. The intrinsic strength of the reinforcement is a key parameter to predict the mechanical properties of the composite and to perform an interface analysis. The main objective of the present work was the determination of the intrinsic tensile strength of stone groundwood fibers. Coupled and non-coupled PP composites from stone groundwood fibers were prepared. The influence of the surface morphology and the quality at interface on the final properties of the composite was analyzed and compared to that of fiberglass PP composites. The intrinsic tensile properties of stone groundwood fibers, as well as the fiber orientation factor and the interfacial shear strength of the current composites were determined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish the validity of subsampling confidence intervals for themean of a dependent series with heavy-tailed marginal distributions.Using point process theory, we study both linear and nonlinear GARCH-liketime series models. We propose a data-dependent method for the optimalblock size selection and investigate its performance by means of asimulation study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose new spanning tests that assess if the initial and additional assets share theeconomically meaningful cost and mean representing portfolios. We prove their asymptoticequivalence to existing tests under local alternatives. We also show that unlike two-step oriterated procedures, single-step methods such as continuously updated GMM yield numericallyidentical overidentifyng restrictions tests, so there is arguably a single spanning test.To prove these results, we extend optimal GMM inference to deal with singularities in thelong run second moment matrix of the influence functions. Finally, we test for spanningusing size and book-to-market sorted US stock portfolios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper fills a gap in the existing literature on least squareslearning in linear rational expectations models by studying a setup inwhich agents learn by fitting ARMA models to a subset of the statevariables. This is a natural specification in models with privateinformation because in the presence of hidden state variables, agentshave an incentive to condition forecasts on the infinite past recordsof observables. We study a particular setting in which it sufficesfor agents to fit a first order ARMA process, which preserves thetractability of a finite dimensional parameterization, while permittingconditioning on the infinite past record. We describe how previousresults (Marcet and Sargent [1989a, 1989b] can be adapted to handlethe convergence of estimators of an ARMA process in our self--referentialenvironment. We also study ``rates'' of convergence analytically and viacomputer simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the robustness of Least-Squares Monte Carlo, a techniquerecently proposed by Longstaff and Schwartz (2001) for pricing Americanoptions. This method is based on least-squares regressions in which theexplanatory variables are certain polynomial functions. We analyze theimpact of different basis functions on option prices. Numerical resultsfor American put options provide evidence that a) this approach is veryrobust to the choice of different alternative polynomials and b) few basisfunctions are required. However, these conclusions are not reached whenanalyzing more complex derivatives.