17 resultados para Matriz de Markov

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'Anàlisi de la supervivència s'utilitza en diferents camps per analitzar el temps transcorregut entre dos esdeveniments. El que distingeix l'anàlisi de la supervivència d'altres àrees de l'estadística és que les dades normalment estan censurades. La censura en un interval apareix quan l'esdeveniment final d'interès no és directament observable i només se sap que el temps de fallada està en un interval concret. Un esquema de censura més complex encara apareix quan tant el temps inicial com el temps final estan censurats en un interval. Aquesta situació s'anomena doble censura. En aquest article donem una descripció formal d'un mètode bayesà paramètric per a l'anàlisi de dades censurades en un interval i dades doblement censurades així com unes indicacions clares de la seva utilització o pràctica. La metodologia proposada s'ilustra amb dades d'una cohort de pacients hemofílics que es varen infectar amb el virus VIH a principis dels anys 1980's.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a stochastic model for disability insurance contracts. The model is based on a discrete time non-homogeneous semi-Markov process (DTNHSMP) to which the backward recurrence time process is introduced. This permits a more exhaustive study of disability evolution and a more efficient approach to the duration problem. The use of semi-Markov reward processes facilitates the possibility of deriving equations of the prospective and retrospective mathematical reserves. The model is applied to a sample of contracts drawn at random from a mutual insurance company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diseño de un Controlador para una matriz de Led Tricolor basado en microprocesador, cuya función principal es la de representar en una matriz de 16 x 16 formada por LED Tricolor, una imagen dada por un archivo digital.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As stated in Aitchison (1986), a proper study of relative variation in a compositional data set should be based on logratios, and dealing with logratios excludes dealing with zeros. Nevertheless, it is clear that zero observations might be present in real data sets, either because the corresponding part is completelyabsent –essential zeros– or because it is below detection limit –rounded zeros. Because the second kind of zeros is usually understood as “a trace too small to measure”, it seems reasonable to replace them by a suitable small value, and this has been the traditional approach. As stated, e.g. by Tauber (1999) and byMartín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000), the principal problem in compositional data analysis is related to rounded zeros. One should be careful to use a replacement strategy that does not seriously distort the general structure of the data. In particular, the covariance structure of the involvedparts –and thus the metric properties– should be preserved, as otherwise further analysis on subpopulations could be misleading. Following this point of view, a non-parametric imputation method isintroduced in Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000). This method is analyzed in depth by Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003) where it is shown that thetheoretical drawbacks of the additive zero replacement method proposed in Aitchison (1986) can be overcome using a new multiplicative approach on the non-zero parts of a composition. The new approachhas reasonable properties from a compositional point of view. In particular, it is “natural” in the sense thatit recovers the “true” composition if replacement values are identical to the missing values, and it is coherent with the basic operations on the simplex. This coherence implies that the covariance structure of subcompositions with no zeros is preserved. As a generalization of the multiplicative replacement, in thesame paper a substitution method for missing values on compositional data sets is introduced

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducción: En 2005 se consumían en España más de 100.000 toneladas/año de plaguicidas, en actividades tan diversas como la agricultura y la ganadería o el tratamiento de la madera y la gestión de plagas estructurales. A pesar de los demostrados efectos negativos de estas sustancias sobre la salud de las personas, existe muy poca información relativa a los niveles y la frecuencia de exposición de los trabajadores expuestos, así como de las ocupaciones más afectadas. Este trabajo tiene como objetivo recopilar la información disponible sobre exposición laboral a plaguicidas en España, en forma de una matriz empleo-exposición (MEE), un sistema de información que permite ordenar de forma sistemática la información más relevante sobre ocupaciones, agentes, prevalencia y nivel/intensidad de exposición en un determinado contexto (país, periodo, etc.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic processes defined by a general Langevin equation of motion where the noise is the non-Gaussian dichotomous Markov noise are studied. A non-FokkerPlanck master differential equation is deduced for the probability density of these processes. Two different models are exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is observed for a critical value of its correlation time. Critical slowing down does not appear in this point but in another one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"XVIII Congreso Internacional de Conservación y Restauración de Bienes Culturales - 18th International Meeting on Heritage Conservation", Granada 9 al 11 novembre de 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"XVIII Congreso Internacional de Conservación y Restauración de Bienes Culturales - 18th International Meeting on Heritage Conservation", Granada 9 al 11 novembre de 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this correspondence, we propose applying the hiddenMarkov models (HMM) theory to the problem of blind channel estimationand data detection. The Baum–Welch (BW) algorithm, which is able toestimate all the parameters of the model, is enriched by introducingsome linear constraints emerging from a linear FIR hypothesis on thechannel. Additionally, a version of the algorithm that is suitable for timevaryingchannels is also presented. Performance is analyzed in a GSMenvironment using standard test channels and is found to be close to thatobtained with a nonblind receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"XVIII Congreso Internacional de Conservación y Restauración de Bienes Culturales - 18th International Meeting on Heritage Conservation", Granada 9 al 11 novembre de 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"XVIII Congreso Internacional de Conservación y Restauración de Bienes Culturales - 18th International Meeting on Heritage Conservation", Granada 9 al 11 novembre de 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una vez se dispone de los datos introducidos en el paquete estadístico del SPSS (Statistical Package of Social Science), en una matriz de datos, es el momento de plantearse optimizar esa matriz para poder extraer el máximo rendimiento a los datos, según el tipo de análisis que se pretende realizar. Para ello, el propio SPSS tiene una serie de utilidades que pueden ser de gran utilidad. Estas utilidades básicas pueden diferenciarse según su funcionalidad entre: utilidades para la edición de datos, utilidades para la modificación de variables, y las opciones de ayuda que nos brinda. A continuación se presentan algunas de estas utilidades.