16 resultados para Markov Switching model
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper presents an analysis of the credibility of the EMScurrencies that covers the period before and after the increase in thebands of fluctuation. Our credibility indicator is based on the inferredprobabilities derived from the estimation of a Markov-switching model(Hamilton (1989)) applied to the expected rate of depreciation. Theresults show that, for most of the currencies, credibility has improved,at least transitorily, after the increase in the bands. However, for allcurrencies, the credibility measured by the indicator proposed in thispaper has been eroded recently even with the widened bands.
Resumo:
This paper adopts dynamic factor models with macro-finance predictors to test the intertemporal risk-return relation for 13 European stock markets. We identify country specific, euro area, and global macro-finance factors to determine the conditional risk and return. Empirically, the risk- return trade-off is generally negative. However, a Markov switching model documents that there is time-variation in this trade-off that is linked to the state of the economy. Keywords: Risk-return trade-off; Dynamic factor model; Macro-finance predictors; European stock markets; Markov switching model JEL Classifications: C22; G11; G12; G17
Resumo:
"Es tracta d'un projecte dividit en dues parts independents però complementàries, realitzades per autors diferents. Aquest document conté originàriament altre material i/o programari només consultable a la Biblioteca de Ciència i Tecnologia"
Resumo:
In the PhD thesis “Sound Texture Modeling” we deal with statistical modelling or textural sounds like water, wind, rain, etc. For synthesis and classification. Our initial model is based on a wavelet tree signal decomposition and the modeling of the resulting sequence by means of a parametric probabilistic model, that can be situated within the family of models trainable via expectation maximization (hidden Markov tree model ). Our model is able to capture key characteristics of the source textures (water, rain, fire, applause, crowd chatter ), and faithfully reproduces some of the sound classes. In terms of a more general taxonomy of natural events proposed by Graver, we worked on models for natural event classification and segmentation. While the event labels comprise physical interactions between materials that do not have textural propierties in their enterity, those segmentation models can help in identifying textural portions of an audio recording useful for analysis and resynthesis. Following our work on concatenative synthesis of musical instruments, we have developed a pattern-based synthesis system, that allows to sonically explore a database of units by means of their representation in a perceptual feature space. Concatenative syntyhesis with “molecules” built from sparse atomic representations also allows capture low-level correlations in perceptual audio features, while facilitating the manipulation of textural sounds based on their physical and perceptual properties. We have approached the problem of sound texture modelling for synthesis from different directions, namely a low-level signal-theoretic point of view through a wavelet transform, and a more high-level point of view driven by perceptual audio features in the concatenative synthesis setting. The developed framework provides unified approach to the high-quality resynthesis of natural texture sounds. Our research is embedded within the Metaverse 1 European project (2008-2011), where our models are contributting as low level building blocks within a semi-automated soundscape generation system.
Resumo:
An endogenous switching model of ex-ante wage changes under indexed and non-indexed settlements is estimated for the Spanish manufacturing sector using collective bargaining firm data for the 1984-1991 period. The likelihood of indexing the settlement is higher for nationwide unions than for other union groups within the works council and increases with the expected level of inflation. For wage change equations, a common structure for indexed and non-indexed settlements is strongly rejected, showing a source of nominal rigidity. For indexed contracts, the expected ex-ante total inflation coverage is nearly complete. It is also shown that workers pay a significant ex-ante wage change premium (differential) to obtain a cost of living allowance clause. However, the realised contingent compensation exceeds such a premium for all industries. Finally, important spillover effects in wage setting and the decision to index the settlement have been detected.
Resumo:
We study theoretical and empirical aspects of the mean exit time (MET) of financial time series. The theoretical modeling is done within the framework of continuous time random walk. We empirically verify that the mean exit time follows a quadratic scaling law and it has associated a prefactor which is specific to the analyzed stock. We perform a series of statistical tests to determine which kind of correlation are responsible for this specificity. The main contribution is associated with the autocorrelation property of stock returns. We introduce and solve analytically both two-state and three-state Markov chain models. The analytical results obtained with the two-state Markov chain model allows us to obtain a data collapse of the 20 measured MET profiles in a single master curve.
Resumo:
Abstract Purpose- There is a lack of studies on tourism demand forecasting that use non-linear models. The aim of this paper is to introduce consumer expectations in time-series models in order to analyse their usefulness to forecast tourism demand. Design/methodology/approach- The paper focuses on forecasting tourism demand in Catalonia for the four main visitor markets (France, the UK, Germany and Italy) combining qualitative information with quantitative models: autoregressive (AR), autoregressive integrated moving average (ARIMA), self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. The forecasting performance of the different models is evaluated for different time horizons (one, two, three, six and 12 months). Findings- Although some differences are found between the results obtained for the different countries, when comparing the forecasting accuracy of the different techniques, ARIMA and Markov switching regime models outperform the rest of the models. In all cases, forecasts of arrivals show lower root mean square errors (RMSE) than forecasts of overnight stays. It is found that models with consumer expectations do not outperform benchmark models. These results are extensive to all time horizons analysed. Research limitations/implications- This study encourages the use of qualitative information and more advanced econometric techniques in order to improve tourism demand forecasting. Originality/value- This is the first study on tourism demand focusing specifically on Catalonia. To date, there have been no studies on tourism demand forecasting that use non-linear models such as self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. This paper fills this gap and analyses forecasting performance at a regional level. Keywords Tourism, Forecasting, Consumers, Spain, Demand management Paper type Research paper
Resumo:
The existence of a supramolecular organization of the G protein-coupled receptor (GPCR) is now being widely accepted by the scientific community. Indeed, GPCR oligomers may enhance the diversity and performance by which extracellular signals are transferred to the G proteins in the process of receptor transduction, although the mechanism that underlies this phenomenon still remains unsolved. Recently, it has been proposed that a trans-conformational switching model could be the mechanism allowing direct inhibition/activation of receptor activation/inhibition, respectively. Thus, heterotropic receptor-receptor allosteric regulations are behind the GPCR oligomeric function. In this paper we want to revise how GPCR oligomerization impinges on several important receptor functions like biosynthesis, plasma membrane diffusion or velocity, pharmacology and signaling. In particular, the rationale of receptor oligomerization might lie in the need of sensing complex whole cell extracellular signals and translating them into a simple computational model.
Resumo:
We estimate changes in fiscal policy regimes in Portugal with a Markov Switching regression of fiscal policy rules for the period 1978-2007, using a new dataset of fiscal quarterly series. We find evidence of a deficit bias, while repeated reversals of taxes making the budget procyclical. Economic booms have typically been used to relax tax pressure, especially during elections. One-off measures have been preferred over structural ones to contain the deficit during economic crises. The EU fiscal rules prompted temporary consolidation, but did not permanently change the budgeting process.
Resumo:
In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.
Resumo:
In this paper, we present a stochastic model for disability insurance contracts. The model is based on a discrete time non-homogeneous semi-Markov process (DTNHSMP) to which the backward recurrence time process is introduced. This permits a more exhaustive study of disability evolution and a more efficient approach to the duration problem. The use of semi-Markov reward processes facilitates the possibility of deriving equations of the prospective and retrospective mathematical reserves. The model is applied to a sample of contracts drawn at random from a mutual insurance company.
Resumo:
This paper presents and estimates a dynamic choice model in the attribute space considering rational consumers. In light of the evidence of several state-dependence patterns, the standard attribute-based model is extended by considering a general utility function where pure inertia and pure variety-seeking behaviors can be explained in the model as particular linear cases. The dynamics of the model are fully characterized by standard dynamic programming techniques. The model presents a stationary consumption pattern that can be inertial, where the consumer only buys one product, or a variety-seeking one, where the consumer shifts among varied products.We run some simulations to analyze the consumption paths out of the steady state. Underthe hybrid utility assumption, the consumer behaves inertially among the unfamiliar brandsfor several periods, eventually switching to a variety-seeking behavior when the stationary levels are approached. An empirical analysis is run using scanner databases for three different product categories: fabric softener, saltine cracker, and catsup. Non-linear specifications provide the best fit of the data, as hybrid functional forms are found in all the product categories for most attributes and segments. These results reveal the statistical superiority of the non-linear structure and confirm the gradual trend to seek variety as the level of familiarity with the purchased items increases.
Resumo:
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for a particular type of diffuse, for Minnesota-type and for hierarchical priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.
Resumo:
We provide analytical evidence of stochastic resonance in polarization switching vertical-cavity surface-emitting lasers (VCSELs). We describe the VCSEL by a two-mode stochastic rate equation model and apply a multiple time-scale analysis. We were able to reduce the dynamical description to a single stochastic differential equation, which is the starting point of the analytical study of stochastic resonance. We confront our results with numerical simulations on the original rate equations, validating the use of a multiple time-scale analysis on stochastic equations as an analytical tool.
Resumo:
In this correspondence, we propose applying the hiddenMarkov models (HMM) theory to the problem of blind channel estimationand data detection. The Baum–Welch (BW) algorithm, which is able toestimate all the parameters of the model, is enriched by introducingsome linear constraints emerging from a linear FIR hypothesis on thechannel. Additionally, a version of the algorithm that is suitable for timevaryingchannels is also presented. Performance is analyzed in a GSMenvironment using standard test channels and is found to be close to thatobtained with a nonblind receiver.