18 resultados para MURINE SKIN
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Resum: El pemfigoid ampul•lar és una malaltia cutània autoimmune. La majoria dels pacients presenten autoanticossos contra proteïnes de la membrana basal de la pell, concretament en contra de la col·làgena XVII, específicament envers el epítop immunodominant, l’NC16A. La patogenicitat dels anticossos ha estat demostrada mitjançant experiments in vitro i in vivo. L’escassa homologia existent entre l’NC16A i el seu homòleg murí (NC14A), ha dificultat l’el·laboració de models animals d’aquesta malaltia. En aquest treball demostrem que el sèrum de pacients amb pemfigoid ampul•lar produeix separació dermo-epidèrmica en pell de ratolí humanitzada obtinguda a partir de cèl•lules mare humanes del provinents fol·licle pil·lós
Resumo:
High hydrostatic pressure is being increasingly investigated in food processing. It causes microbial inactivation and therefore extends the shelf life and enhances the safety of food products. Yeasts, molds, and vegetative cells of bacteria can be inactivated by pressures in the range of 200 to 700 MPa. Microorganisms are more or less sensitive to pressure depending on several factors such as type, strain and the phase or state of the cells. In general, Gram-positive organisms are usually more resistant than Gram-negative. High pressure processing modifies the permeability of the cell membrane, the ion exchange and causes changes in morphology and biochemical reactions, protein denaturations and inhibition of genetic mechanisms. High pressure has been used successfully to extend the shelf life of high-acid foods such as refrigerated fruit juices, jellies and jams. There is now an increasing interest in the use of this technology to extend the shelf life of low-acid foods such as different types of meat products.
Resumo:
Alteracions durant el desenvolupament cerebral produirien canvis en la connectivitat neuronal i la bioquímica cel•lular que podrien resultar en una disfunció cognitiva i/o emocional, desembocant a trastorns psiquiàtrics. Les neurotrofines intervenen en els processos del neurodesenvolupament i en la funcionalitat del cervell adult i, conseqüentment, serien bons candidats com a factors de predisposició en diverses malalties mentals. S’ha suggerit la implicació del receptor de la neurotrofina 3, TrkC, en el trastorn de pànic. Nosaltres proposem que la sobreexpressió del gen NTRK3 (TrkC) és un mediador comú dels desencadenants genètics i ambientals d’aquest trastorn. Concretament, la seva desregulació podria produir canvis estructurals i funcionals a l’escorça cerebral dels pacients pel seu paper durant l’establiment dels circuïts corticals i la neuroplasticitat a l’adult, probablement esdevenint elements de predisposició a patir atacs de pànic. Els objectius principals d’aquest treball han estat: 1/determinar la contribució específica del gen NTRK3 a les alteracions de l’escorça cerebral observades en pacients, utilitzant un model murí modificat genèticament (TgNTRK3), i 2/analitzar l’impacte específic de la sobreexpressió de NTRK3 sobre la corticogènesi durant estadis embrionaris o postnatals estudiant la neurogènesi i la neuritogènesi. Els resultats indiquen que la sobreexpressió de NTRK3 als ratolins produeix una reducció del gruix de l’escorça frontal, recapitulant la hipofrontalitat dels pacients, que comportaria una menor inhibició dels nuclis subcorticals del sistema límbic com l’amígdala, i alteracions citoarquitectòniques a l’escorça prefrontal medial que recolzen la hipòtesi del seu mal funcionament. Tanmateix, els ratolins TgNTRK3 presenten canvis estructurals a l’escorça somatosensorial, suggerint que el processament de la informació sensorial podria estar alterat, el que encara no s’ha explorat en pacients. La sobreexpressió de NTRK3 també afecta la neuritogènesi en cultius primaris corticals i modifica la resposta de les neurones a l’estimulació amb neurotrofines. Per tant, el fenotip cortical adult dels TgNTRK3 podria dependre d’alteracions durant la corticogènesi.
Resumo:
Background Multiple Sclerosis (MS) is an acquired inflammatory demyelinating disorder of the central nervous system (CNS) and is the leading cause of nontraumatic disability among young adults. Activated microglial cells are important effectors of demyelination and neurodegeneration, by secreting cytokines and others neurotoxic agents. Previous studies have demonstrated that microglia expresses ATP-sensitive potassium (KATP) channels and its pharmacological activation can provide neuroprotective and anti-inflammatory effects. In this study, we have examined the effect of oral administration of KATP channel opener diazoxide on induced experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Methods Anti-inflammatory effects of diazoxide were studied on lipopolysaccharide (LPS) and interferon gamma (IFNy)-activated microglial cells. EAE was induced in C57BL/6J mice by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Mice were orally treated daily with diazoxide or vehicle for 15 days from the day of EAE symptom onset. Treatment starting at the same time as immunization was also assayed. Clinical signs of EAE were monitored and histological studies were performed to analyze tissue damage, demyelination, glial reactivity, axonal loss, neuronal preservation and lymphocyte infiltration. Results Diazoxide inhibited in vitro nitric oxide (NO), tumor necrosis factor alpha (TNF-¿) and interleukin-6 (IL-6) production and inducible nitric oxide synthase (iNOS) expression by activated microglia without affecting cyclooxygenase-2 (COX-2) expression and phagocytosis. Oral treatment of mice with diazoxide ameliorated EAE clinical signs but did not prevent disease. Histological analysis demonstrated that diazoxide elicited a significant reduction in myelin and axonal loss accompanied by a decrease in glial activation and neuronal damage. Diazoxide did not affect the number of infiltrating lymphocytes positive for CD3 and CD20 in the spinal cord. Conclusion Taken together, these results demonstrate novel actions of diazoxide as an anti-inflammatory agent, which might contribute to its beneficial effects on EAE through neuroprotection. Treatment with this widely used and well-tolerated drug may be a useful therapeutic intervention in ameliorating MS disease.
Resumo:
We study whether the neutron skin thickness Δrnp of 208Pb originates from the bulk or from the surface of the nucleon density distributions, according to the mean-field models of nuclear structure, and find that it depends on the stiffness of the nuclear symmetry energy. The bulk contribution to Δrnp arises from an extended sharp radius of neutrons, whereas the surface contribution arises from different widths of the neutron and proton surfaces. Nuclear models where the symmetry energy is stiff, as typical of relativistic models, predict a bulk contribution in Δrnp of 208Pb about twice as large as the surface contribution. In contrast, models with a soft symmetry energy like common nonrelativistic models predict that Δrnp of 208Pb is divided similarly into bulk and surface parts. Indeed, if the symmetry energy is supersoft, the surface contribution becomes dominant. We note that the linear correlation of Δrnp of 208Pb with the density derivative of the nuclear symmetry energy arises from the bulk part of Δrnp. We also note that most models predict a mixed-type (between halo and skin) neutron distribution for 208Pb. Although the halo-type limit is actually found in the models with a supersoft symmetry energy, the skin-type limit is not supported by any mean-field model. Finally, we compute parity-violating electron scattering in the conditions of the 208Pb parity radius experiment (PREX) and obtain a pocket formula for the parity-violating asymmetry in terms of the parameters that characterize the shape of the 208Pb nucleon densities.
Resumo:
The aim of this article is to show how, throughout M. A. Riera's poetry, an evident anti-metaphysical sensibility can be easily detected, which in its turn makes the poet to praise concrete person's skin, flesh and bodies, thus avoiding any personal Platonic or idealistic experience of human love. In the author's opinion, an accurate reading of his poems makes us discover Plato and Platonism as one of the great responsible thinkers for the contempt of carnal love, which has been undoubtedly the origin of a real human pain as a result of denying the somatic side of eros.
Resumo:
Purpose. The aim of this study was to identify new surfactants with low skin irritant properties for use in pharmaceutical and cosmetic formulations, employing cell culture as an alternative method to in vivo testing. In addition, we sought to establish whether potential cytotoxic properties were related to the size of the counterions bound to the surfactants. Methods. Cytotoxicity was assessed in the mouse fibroblast cell line 3T6, and the human keratinocyte cell line NCTC 2544, using the MTT assay and uptake of the vital dye neutral red 24 h after dosing (NRU). Results. Lysine-derivative surfactants showed higher IC50s than did commercial anionic irritant compounds such as sodium dodecyl sulphate, proving to be no more harmful than amphoteric betaines. The aggressiveness of the surfactants depended upon the size of their constituent counterions: surfactants associated with lighter counterions showed a proportionally higher aggressivity than those with heavier ones. Conclusions. Synthetic lysine-derivative anionic surfactants are less irritant than commercial surfactants such as sodium dodecyl sulphate and Hexadecyltrimethylammonium bromide and are similar to Betaines. These surfactants may offer promising applications in pharmaceutical and cosmetic preparations, representing a potential alternative to commercial anionic surfactants as a result of their low irritancy potential.
Resumo:
Bicellar systems are lipid nanostructures formed by long- and short-chained phospholipids dispersed in aqueoussolution. Because of their attractive combination of lipid composition, small size and morphological versatility, bicellesbecame new targets for skin research. Bicelles modify the skin biophysical parameters and modulate the skin barrier function acting as enhancers for drug penetration. Moreover, these aggregates have the ability to penetrate through the narrowintercellular spaces of the skin stratum corneum and to reinforce its lipid lamellae. Their structures allows for the incorporation of different molecules that can be carried through the skin layers. Theremarkable versatility of bicelles is their most important characteristic, which makes it possible their use in different fields.These aggregates represent new nanosystems for skin applications. In this work we provide an overview of the main properties ofbicelles and their effects on the skin.
Resumo:
Currently a growing interest to improve the pharmacological therapy exists, not only by the production and the appearance of new drugs, but guaranteeing that the uses of those which already exist, become more effective. In fact, the conventional pharmaceutical formulations of different drugs present a few secondary effects due to oral administration. In order to avoid these undesired side effects, the purpose of current therapeutic is the development and research of formulations as an alternative to others routes of administration. Therefore, in spite of the undoubtedly complete parenteral absorption, the transdermal and transbuccal routes appear to be a rather attractive alternative to provide an efficient absorption. In this chapter a new technological, biopharmaceutical and pharmacokinetic approach of strategies for application on skin and buccal mucosa are reported. In the future new transdermal drug delivery systems will emerge to be more effective, equipped with an improved aesthetic appearance, better adherence and greater diffusion. But to reach these aims, it is necessary previous knowledge of histology and physiology of skin, and factors involved in the penetration of drugs through it.
Resumo:
Although metabolic syndrome (MS) and systemic lupus erythematosus (SLE) are often associated, a common link has not been identified. Using the BWF1 mouse, which develops MS and SLE, we sought a molecular connection to explain the prevalence of these two diseases in the same individuals. We determined SLE- markers (plasma anti-ds-DNA antibodies, splenic regulatory T cells (Tregs) and cytokines, proteinuria and renal histology) and MS-markers (plasma glucose, non-esterified fatty acids, triglycerides, insulin and leptin, liver triglycerides, visceral adipose tissue, liver and adipose tissue expression of 86 insulin signaling-related genes) in 8-, 16-, 24-, and 36-week old BWF1 and control New-Zealand-White female mice. Up to week 16, BWF1 mice showed MS-markers (hyperleptinemia, hyperinsulinemia, fatty liver and visceral adipose tissue) that disappeared at week 36, when plasma anti-dsDNA antibodies, lupus nephritis and a pro-autoimmune cytokine profile were detected. BWF1 mice had hyperleptinemia and high splenic Tregs till week 16, thereby pointing to leptin resistance, as confirmed by the lack of increased liver P-Tyr-STAT-3. Hyperinsulinemia was associated with a down-regulation of insulin related-genes only in adipose tissue, whereas expression of liver mammalian target of rapamicyn (mTOR) was increased. Although leptin resistance presented early in BWF1 mice can slow-down the progression of autoimmunity, our results suggest that sustained insulin stimulation of organs, such as liver and probably kidneys, facilitates the over-expression and activity of mTOR and the development of SLE.
Resumo:
We analyze the neutron skin thickness in finite nuclei with the droplet model and effective nuclear interactions. The ratio of the bulk symmetry energy J to the so-called surface stiffness coefficient Q has in the droplet model a prominent role in driving the size of neutron skins. We present a correlation between the density derivative of the nuclear symmetry energy at saturation and the J/Q ratio. We emphasize the role of the surface widths of the neutron and proton density profiles in the calculation of the neutron skin thickness when one uses realistic mean-field effective interactions. Next, taking as experimental baseline the neutron skin sizes measured in 26 antiprotonic atoms along the mass table, we explore constraints arising from neutron skins on the value of the J/Q ratio. The results favor a relatively soft symmetry energy at subsaturation densities. Our predictions are compared with the recent constraints derived from other experimental observables. Though the various extractions predict different ranges of values, one finds a narrow window L∼45-75 MeV for the coefficient L that characterizes the density derivative of the symmetry energy that is compatible with all the different empirical indications.
Resumo:
We describe a relation between the symmetry energy coefficients csym(ρ) of nuclear matter and asym(A) of finite nuclei that accommodates other correlations of nuclear properties with the low-density behavior of csym(ρ). Here, we take advantage of this relation to explore the prospects for constraining csym(ρ) of systematic measurements of neutron skin sizes across the mass table, using as example present data from antiprotonic atoms. The found constraints from neutron skins are in harmony with the recent determinations from reactions and giant resonances.
Resumo:
Chronic obstructive pulmonary disease (COPD) is a lethal progressive lung disease culminating in permanent airway obstruction and alveolar enlargement. Previous studies suggest CTL involvement in COPD progression; however, their precise role remains unknown. Here, we investigated whether the CTL activation receptor NK cell group 2D (NKG2D) contributes to the development of COPD. Using primary murine lung epithelium isolated from mice chronically exposed to cigarette smoke and cultured epithelial cells exposed to cigarette smoke extract in vitro, we demonstrated induced expression of the NKG2D ligand retinoic acid early tran - script 1 (RAET1)as well as NKG2D-mediated cytotoxicity. Furthermore, a genetic model of inducible RAET1 expression on mouse pulmonary epithelial cells yielded a severe emphysematous phenotype characterized by epithelial apoptosis and increased CTL activation, which was reversed by blocking NKG2D activation. We also assessed whether NKG2D ligand expression corresponded with pulmonary disease in human patients by staining airway and peripheral lung tissues from never smokers, smokers with normal lung function, and current and former smokers with COPD. NKG2D ligand expression was independent of NKG2D receptor expression in COPD patients, demonstrating that ligand expression is the limiting factor in CTL activation. These results demonstrate that aberrant, persistent NKG2D ligand expression in the pulmonary epithelium contributes to the development of COPD pathologies.
Resumo:
The neutron skin thickness of nuclei is a sensitive probe of the nuclear symmetry energy and has multiple implications for nuclear and astrophysical studies. However, precision measurements of this observable are difficult to obtain. The analysis of the experimental data may imply some assumptions about the bulk or surface nature of the formation of the neutron skin. Here we study the bulk or surface character of neutron skins of nuclei following from calculations with Gogny, Skyrme, and covariant nuclear mean-field interactions. These interactions are successful in describing nuclear charge radii and binding energies but predict different values for neutron skins. We perform the study by fitting two-parameter Fermi distributions to the calculated self-consistent neutron and proton densities. We note that the equivalent sharp radius is a more suitable reference quantity than the half-density radius parameter of the Fermi distributions to discern between the bulk and surface contributions in neutron skins. We present calculations for nuclei in the stability valley and for the isotopic chains of Sn and Pb.
Resumo:
A precise determination of the neutron skin thickness of a heavy nucleus sets a basic constraint on the nuclear symmetry energy (the neutron skin thickness is the difference of the neutron and proton rms radii of the nucleus). The parity radius experiment (PREX) may achieve it by electroweak parity-violating electron scattering (PVES) on 208Pb. We investigate PVES in nuclear mean field approach to allow the accurate extraction of the neutron skin thickness of 208Pb from the parity-violating asymmetry probed in the experiment. We demonstrate a high linear correlation between the parity-violating asymmetry and the neutron skin thickness in successful mean field forces as the best means to constrain the neutron skin of 208Pb from PREX, without assumptions on the neutron density shape. Continuation of the experiment with higher precision in the parity-violating asymmetry is motivated since the present method can support it to constrain the density slope of the nuclear symmetry energy to new accuracy.