25 resultados para Lipschitz Mappings
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
For bilipschitz images of Cantor sets in Rd we estimate the Lipschitz harmonic capacity and show this capacity is invariant under bilipschitz homeomorphisms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper we prove T1 type necessary and sufficient conditions for the boundedness on inhomogeneous Lipschitz spaces of fractional integrals and singular integrals defined on a measure metric space whose measure satisfies a n-dimensional growth. We also show that hypersingular integrals are bounded on these spaces.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
L'any 1994, Astala publicà el reconegut teorema de distorió de l'àrea per aplicacions quasiconformes, un resultat innovador que va permetre que n'apareguessin nombrosos més dins d'aquest camp de l'anàlisi durant la darrera dècada. Ens centrem en les conseqüències que té en la distorsió de la mesura de Hausdorff. Seguim la demostració de Lacey, Sawyer i Uriarte-Tuero per la distorsió del contingut de Hausdorff, clarificant-ne alguns punts i canviant l'enfocament per l'acotació de la transformada de Beurling, on prenem les idees d'Astala, Clop, Tolsa, Uriarte-Tuero i Verdera.
Resumo:
We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of interpolating and sampling sequences for this space. We also give a description of the trace of such functions to sequences of critical density in terms of a cancellation condition.
Resumo:
In this paper we obtain the necessary and sufficient conditions for embedding results of different function classes. The main result is a criterion for embedding theorems for the so-called generalized Weyl-Nikol'skii class and the generalized Lipschitz class. To define the Weyl-Nikol'skii class, we use the concept of a (λ,β)-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, we give estimates of norms and moduli of smoothness of transformed Fourier series.
Resumo:
R.P. Boas has found necessary and sufficient conditions of belonging of function to Lipschitz class. From his findings it turned out, that the conditions on sine and cosine coefficients for belonging of function to Lip α(0 & α & 1) are the same, but for Lip 1 are different. Later his results were generalized by many authors in the viewpoint of generalization of condition on the majorant of modulus of continuity. The aim of this paper is to obtain Boas-type theorems for generalized Lipschitz classes. To define generalized Lipschitz classes we use the concept of modulus of smoothness of fractional order.
Resumo:
We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.
Resumo:
We prove the non-emptiness of the core of an NTU game satisfying a condition of payoff-dependent balancedness, based on transfer rate mappings. We also define a new equilibrium condition on transfer rates and we prove the existence of core payoff vectors satisfying this condition. The additional requirement of transfer rate equilibrium refines the core concept and allows the selection of specific core payoff vectors. Lastly, the class of parametrized cooperative games is introduced. This new setting and its associated equilibrium-core solution extend the usual cooperative game framework and core solution to situations depending on an exogenous environment. A non-emptiness result for the equilibrium-core is also provided in the context of a parametrized cooperative game. Our proofs borrow mathematical tools and geometric constructions from general equilibrium theory with non convexities. Applications to extant results taken from game theory and economic theory are given.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.