30 resultados para Linear discriminant analysis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%.
Resumo:
The main aim of this study was to replicate and extend previous results on subtypes of adolescents with substance use disorders (SUD), according to their Minnesota Multiphasic Personality Inventory for adolescents (MMPI-A) profiles. Sixty patients with SUD and psychiatric comorbidity (41.7% male, mean age = 15.9 years old) completed the MMPI-A, the Teen Addiction Severity Index (T-ASI), the Child Behaviour Checklist (CBCL), and were interviewed in order to determine DSMIV diagnoses and level of substance use. Mean MMPI-A personality profile showed moderate peaks in Psychopathic Deviate, Depression and Hysteria scales. Hierarchical cluster analysis revealed four profiles (acting-out, 35% of the sample; disorganized-conflictive, 15%; normative-impulsive, 15%; and deceptive-concealed, 35%). External correlates were found between cluster 1, CBCL externalizing symptoms at a clinical level and conduct disorders, and between cluster 2 and mixed CBCL internalized/externalized symptoms at a clinical level. Discriminant analysis showed that Depression, Psychopathic Deviate and Psychasthenia MMPI-A scales correctly classified 90% of the patients into the clusters obtained.
Resumo:
The main aim of this study was to replicate and extend previous results on subtypes of adolescents with substance use disorders (SUD), according to their Minnesota Multiphasic Personality Inventory for adolescents (MMPI-A) profiles. Sixty patients with SUD and psychiatric comorbidity (41.7% male, mean age = 15.9 years old) completed the MMPI-A, the Teen Addiction Severity Index (T-ASI), the Child Behaviour Checklist (CBCL), and were interviewed in order to determine DSMIV diagnoses and level of substance use. Mean MMPI-A personality profile showed moderate peaks in Psychopathic Deviate, Depression and Hysteria scales. Hierarchical cluster analysis revealed four profiles (acting-out, 35% of the sample; disorganized-conflictive, 15%; normative-impulsive, 15%; and deceptive-concealed, 35%). External correlates were found between cluster 1, CBCL externalizing symptoms at a clinical level and conduct disorders, and between cluster 2 and mixed CBCL internalized/externalized symptoms at a clinical level. Discriminant analysis showed that Depression, Psychopathic Deviate and Psychasthenia MMPI-A scales correctly classified 90% of the patients into the clusters obtained.
Resumo:
A new analytical method was developed to non-destructively determine pH and degree of polymerisation (DP) of cellulose in fibres in 19th 20th century painting canvases, and to identify the fibre type: cotton, linen, hemp, ramie or jute. The method is based on NIR spectroscopy and multivariate data analysis, while for calibration and validation a reference collection of 199 historical canvas samples was used. The reference collection was analysed destructively using microscopy and chemical analytical methods. Partial least squares regression was used to build quantitative methods to determine pH and DP, and linear discriminant analysis was used to determine the fibre type. To interpret the obtained chemical information, an expert assessment panel developed a categorisation system to discriminate between canvases that may not be fit to withstand excessive mechanical stress, e.g. transportation. The limiting DP for this category was found to be 600. With the new method and categorisation system, canvases of 12 Dalí paintings from the Fundació Gala-Salvador Dalí (Figueres, Spain) were non-destructively analysed for pH, DP and fibre type, and their fitness determined, which informs conservation recommendations. The study demonstrates that collection-wide canvas condition surveys can be performed efficiently and non-destructively, which could significantly improve collection management.
Resumo:
Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance.
Resumo:
Several clinical studies have reported that EEG synchrony is affected by Alzheimer’s disease (AD). In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD using EEG signals. In this paper, multiple synchrony measures are assessed through statistical tests (Mann–Whitney U test), including correlation, phase synchrony and Granger causality measures. Moreover, linear discriminant analysis (LDA) is conducted with those synchrony measures as features. For the data set at hand, the frequency range (5-6Hz) yields the best accuracy for diagnosing AD, which lies within the classical theta band (4-8Hz). The corresponding classification error is 4.88% for directed transfer function (DTF) Granger causality measure. Interestingly, results show that EEG of AD patients is more synchronous than in healthy subjects within the optimized range 5-6Hz, which is in sharp contrast with the loss of synchrony in AD EEG reported in many earlier studies. This new finding may provide new insights about the neurophysiology of AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.
Resumo:
This paper presents a new method to analyze timeinvariant linear networks allowing the existence of inconsistent initial conditions. This method is based on the use of distributions and state equations. Any time-invariant linear network can be analyzed. The network can involve any kind of pure or controlled sources. Also, the transferences of energy that occur at t=O are determined, and the concept of connection energy is introduced. The algorithms are easily implemented in a computer program.
Resumo:
We present an exact test for whether two random variables that have known bounds on their support are negatively correlated. The alternative hypothesis is that they are not negatively correlated. No assumptions are made on the underlying distributions. We show by example that the Spearman rank correlation test as the competing exact test of correlation in nonparametric settings rests on an additional assumption on the data generating process without which it is not valid as a test for correlation.We then show how to test for the significance of the slope in a linear regression analysis that invovles a single independent variable and where outcomes of the dependent variable belong to a known bounded set.
Resumo:
Correspondència referida a l'article de R. Giannetti, publicat ibid. vol.49 p.87-88
Resumo:
Social entrepreneurship has been a subject of growing interest by academics and governments, however little still being known about environmental factors that affect this phenomenon. The main objective of this study is to analyze how these factors affect social entrepreneurial activity, in the light of the institutional economic theory as the conceptual framework. Using linear regression analysis for a sample of 49 countries, is studied the impact of informal institutions (social needs, societal attitudes and education) and formal institutions (public spending, access to finance and governance effectiveness) on social entrepreneurial activity. The findings suggest that while societal attitudes increase the rates of social entrepreneurship, public spending has a negative relationship with this phenomenon. Finally, the empirical evidence found could be useful for the definition of government policies on promoting social entrepreneurship.
Resumo:
Biplots are graphical displays of data matrices based on the decomposition of a matrix as the product of two matrices. Elements of these two matrices are used as coordinates for the rows and columns of the data matrix, with an interpretation of the joint presentation that relies on the properties of the scalar product. Because the decomposition is not unique, there are several alternative ways to scale the row and column points of the biplot, which can cause confusion amongst users, especially when software packages are not united in their approach to this issue. We propose a new scaling of the solution, called the standard biplot, which applies equally well to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. The standard biplot also handles data matrices with widely different levels of inherent variance. Two concepts taken from correspondence analysis are important to this idea: the weighting of row and column points, and the contributions made by the points to the solution. In the standard biplot one set of points, usually the rows of the data matrix, optimally represent the positions of the cases or sample units, which are weighted and usually standardized in some way unless the matrix contains values that are comparable in their raw form. The other set of points, usually the columns, is represented in accordance with their contributions to the low-dimensional solution. As for any biplot, the projections of the row points onto vectors defined by the column points approximate the centred and (optionally) standardized data. The method is illustrated with several examples to demonstrate how the standard biplot copes in different situations to give a joint map which needs only one common scale on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot readable. The proposal also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important.
Resumo:
In order to interpret the biplot it is necessary to know which points usually variables are the ones that are important contributors to the solution, and this information is available separately as part of the biplot s numerical results. We propose a new scaling of the display, called the contribution biplot, which incorporates this diagnostic directly into the graphical display, showing visually the important contributors and thus facilitating the biplot interpretation and often simplifying the graphical representation considerably. The contribution biplot can be applied to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. In the contribution biplot one set of points, usually the rows of the data matrix, optimally represent the spatial positions of the cases or sample units, according to some distance measure that usually incorporates some form of standardization unless all data are comparable in scale. The other set of points, usually the columns, is represented by vectors that are related to their contributions to the low-dimensional solution. A fringe benefit is that usually only one common scale for row and column points is needed on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot legible. Furthermore, this version of the biplot also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important, when they are in fact contributing minimally to the solution.
Resumo:
Ginzburg-Landau equations with multiplicative noise are considered, to study the effects of fluctuations in domain growth. The equations are derived from a coarse-grained methodology and expressions for the resulting concentration-dependent diffusion coefficients are proposed. The multiplicative noise gives contributions to the Cahn-Hilliard linear-stability analysis. In particular, it introduces a delay in the domain-growth dynamics.
Resumo:
In a recent paper A. S. Johal and D. J. Dunstan [Phys. Rev. B 73, 024106 (2006)] have applied multivariate linear regression analysis to the published data of the change in ultrasonic velocity with applied stress. The aim is to obtain the best estimates for the third-order elastic constants in cubic materials. From such an analysis they conclude that uniaxial stress data on metals turns out to be nearly useless by itself. The purpose of this comment is to point out that by a proper analysis of uniaxial stress data it is possible to obtain reliable values of third-order elastic constants in cubic metals and alloys. Cu-based shape memory alloys are used as an illustrative example.
Resumo:
We have studied the growth of interfaces in driven diffusive systems well below the critical temperature by means of Monte Carlo simulations. We consider the region beyond the linear regime and of large values of the external field which has not been explored before. The simulations support the existence of interfacial traveling waves when asymmetry is introduced in the model, a result previously predicted by a linear-stability analysis. Furthermore, the generalization of the Gibbs-Thomson relation is discussed. The results provide evidence that the external field is a stabilizing effect which can be considered as effectively increasing the surface tension.