53 resultados para Limit cycles

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l´inici del document del fitxer adjunt."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study quadratic perturbations of the integrable system (1+x)dH; where H =(x²+y²)=2: We prove that the first three Melnikov functions associated to the perturbed system give rise at most to three limit cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study spatio-temporal pattern formation in a ring of N oscillators with inhibitory unidirectional pulselike interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once. Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each pattern by means of some probabilistic arguments and pattern degeneracy, and show how they are modified as we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a pefect agreement with numerical simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let (P, Q) be a C 1 vector field defined in a open subset U ⊂ R2 . We call a null divergence factor a C 1 solution V (x, y) of the equation P ∂V + Q ∂V = ∂P + ∂Q V . In previous works ∂x ∂y ∂x ∂y it has been shown that this function plays a fundamental role in the problem of the center and in the determination of the limit cycles. In this paper we show how to construct systems with a given null divergence factor. The method presented in this paper is a generalization of the classical Darboux method to generate integrable systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relation between limit cycles of planar differential systems and the inverse integrating factor was first shown in an article of Giacomini, Llibre and Viano appeared in 1996. From that moment on, many research articles are devoted to the study of the properties of the inverse integrating factor and its relationwith limit cycles and their bifurcations. This paper is a summary of all the results about this topic. We include a list of references together with the corresponding related results aiming at being as much exhaustive as possible. The paper is, nonetheless, self-contained in such a way that all the main results on the inverse integrating factor are stated and a complete overview of the subject is given. Each section contains a different issue to which the inverse integrating factor plays a role: the integrability problem, relation with Lie symmetries, the center problem, vanishing set of an inverse integrating factor, bifurcation of limit cycles from either a period annulus or from a monodromic ω-limit set and some generalizations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish a one-to-one correspondence between the renormalizations and proper totally invariant closed sets (i.e., α-limit sets) of expanding Lorenz map, which enable us to distinguish periodic and non-periodic renormalizations. We describe the minimal renormalization by constructing the minimal totally invariant closed set, so that we can define the renormalization operator. Using consecutive renormalizations, we obtain complete topological characteriza- tion of α-limit sets and nonwandering set decomposition. For piecewise linear Lorenz map with slopes ≥ 1, we show that each renormalization is periodic and every proper α-limit set is countable.