26 resultados para Learning Models
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We study the statistical properties of three estimation methods for a model of learning that is often fitted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood withand without unobserved heterogeneity. After discussing identification issues, we show that the estimators are consistent and provide their asymptotic distribution. Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties areobtained if unobserved heterogeneity is introduced. That is, rather than estimating the parameters for each individual, the individual parameters are considered random variables, and the distribution of those random variables is estimated.
Resumo:
Feedback-related negativity (FRN) is an ERP component that distinguishes positive from negative feedback. FRN has been hypothesized to be the product of an error signal that may be used to adjust future behavior. In addition, associative learning models assume that the trial-to-trial learning of cueoutcome mappings involves the minimization of an error term. This study evaluated whether FRN is a possible electrophysiological correlate of this error term in a predictive learning task where human subjects were asked to learn different cueoutcome relationships. Specifically, we evaluated the sensitivity of the FRN to the course of learning when different stimuli interact or compete to become a predictor of certain outcomes. Importantly, some of these cues were blocked by more informative or predictive cues (i.e., the blocking effect). Interestingly, the present results show that both learning and blocking affect the amplitude of the FRN component. Furthermore, independent analyses of positive and negative feedback event-related signals showed that the learning effect was restricted to the ERP component elicited by positive feedback. The blocking test showed differences in the FRN magnitude between a predictive and a blocked cue. Overall, the present results show that ERPs that are related to feedback processing correspond to the main predictions of associative learning models. ■
Resumo:
Peer-reviewed
Resumo:
Peer-reviewed
Resumo:
This paper investigates the role of learning by private agents and the central bank (two-sided learning) in a New Keynesian framework in which both sides of the economy have asymmetric and imperfect knowledge about the true data generating process. We assume that all agents employ the data that they observe (which may be distinct for different sets of agents) to form beliefs about unknown aspects of the true model of the economy, use their beliefs to decide on actions, and revise these beliefs through a statistical learning algorithm as new information becomes available. We study the short-run dynamics of our model and derive its policy recommendations, particularly with respect to central bank communications. We demonstrate that two-sided learning can generate substantial increases in volatility and persistence, and alter the behavior of the variables in the model in a signifficant way. Our simulations do not converge to a symmetric rational expectations equilibrium and we highlight one source that invalidates the convergence results of Marcet and Sargent (1989). Finally, we identify a novel aspect of central bank communication in models of learning: communication can be harmful if the central bank's model is substantially mis-specified
Resumo:
This paper investigates the role of learning by private agents and the central bank(two-sided learning) in a New Keynesian framework in which both sides of the economyhave asymmetric and imperfect knowledge about the true data generating process. Weassume that all agents employ the data that they observe (which may be distinct fordifferent sets of agents) to form beliefs about unknown aspects of the true model ofthe economy, use their beliefs to decide on actions, and revise these beliefs througha statistical learning algorithm as new information becomes available. We study theshort-run dynamics of our model and derive its policy recommendations, particularlywith respect to central bank communications. We demonstrate that two-sided learningcan generate substantial increases in volatility and persistence, and alter the behaviorof the variables in the model in a significant way. Our simulations do not convergeto a symmetric rational expectations equilibrium and we highlight one source thatinvalidates the convergence results of Marcet and Sargent (1989). Finally, we identifya novel aspect of central bank communication in models of learning: communicationcan be harmful if the central bank's model is substantially mis-specified.
Resumo:
In this work I study the stability of the dynamics generated by adaptivelearning processes in intertemporal economies with lagged variables. Iprove that determinacy of the steady state is a necessary condition for the convergence of the learning dynamics and I show that the reciprocal is not true characterizing the economies where convergence holds. In the case of existence of cycles I show that there is not, in general, a relationship between determinacy and convergence of the learning process to the cycle. I also analyze the expectational stability of these equilibria.
Resumo:
Many educators and educational institutions have yet to integrate web-based practices into their classrooms and curricula. As a result, it can be difficult to prototype and evaluate approaches to transforming classrooms from static endpoints to dynamic, content-creating nodes in the online information ecosystem. But many scholastic journalism programs have already embraced the capabilities of the Internet for virtual collaboration, dissemination, and reader participation. Because of this, scholastic journalism can act as a test-bed for integrating web-based sharing and collaboration practices into classrooms. Student Journalism 2.0 was a research project to integrate open copyright licenses into two scholastic journalism programs, to document outcomes, and to identify recommendations and remaining challenges for similar integrations. Video and audio recordings of two participating high school journalism programs informed the research. In describing the steps of our integration process, we note some important legal, technical, and social challenges. Legal worries such as uncertainty over copyright ownership could lead districts and administrators to disallow open licensing of student work. Publication platforms among journalism classrooms are far from standardized, making any integration of new technologies and practices difficult to achieve at scale. And teachers and students face challenges re-conceptualizing the role their class work can play online.
Resumo:
Two claims pervade the literature on the political economy of market reforms: that economic crises cause reforms; and that crises matter because they bring into question the validity of the economic model held to be responsible for them. Economic crises are said to spur a process of learning that is conducive to the abandonment of failing models and to the adoption of successful models. But although these claims have become the conventional wisdom, they have been hardly tested empirically due to the lack of agreement on what constitutes a crisis and to difficulties in measuring learning from them. I propose a model of rational learning from experience and apply it to the decision to open the economy. Using data from 1964 through 1990, I show that learning from the 1982 debt crisis was relevant to the first wave of adoption of an export promotion strategy, but learning was conditional on the high variability of economic outcomes in countries that opened up to trade. Learning was also symbolic in that the sheer number of other countries that liberalized was a more important driver of others’ decisions to follow suit.
Resumo:
This paper studies optimal monetary policy in a framework that explicitly accounts for policymakers' uncertainty about the channels of transmission of oil prices into the economy. More specfically, I examine the robust response to the real price of oil that US monetary authorities would have been recommended to implement in the period 1970 2009; had they used the approach proposed by Cogley and Sargent (2005b) to incorporate model uncertainty and learning into policy decisions. In this context, I investigate the extent to which regulator' changing beliefs over different models of the economy play a role in the policy selection process. The main conclusion of this work is that, in the specific environment under analysis, one of the underlying models dominates the optimal interest rate response to oil prices. This result persists even when alternative assumptions on the model's priors change the pattern of the relative posterior probabilities, and can thus be attributed to the presence of model uncertainty itself.
Resumo:
La Facultat de Ciències de la Salut i de la Vida ha utilitzat des de 2004 la metodologia d'aprenentatge basat en problemes (en endavant ABP) com a mètode docent en els seus estudis de Biologia. En aquest període hem après algunes de les claus de l'aplicació del mètode en els nostres estudis. En primer lloc, cal disposar d'elements formatius que afavoreixin la formació dels tutors que participin en el projecte. Per assolir aquest objectiu hem dissenyat un portal on els nostres professors poden disposar de materials útils per a la seva activitat, així com de documents que permetin entendre millor el que suposa l'ABP. En segon lloc, el projecte tenia l'objectiu de dissenyar i avaluar activitats que permetessin integrar les pràctiques de laboratori en la lògica de la resolució de problemes pròpia de l'ABP. En aquest sentit vam dissenyar dues activitats en el tercer curs de la llicenciatura que anomenaren aprenentatge basat en el laboratori (ABL). Per aquest motiu es van dissenyar problemes que tinguessin una primera part de resolució a l'aula en grup de tutoria i una segona que obligués els estudiants a realitzar experiments de laboratori dirigits a entendre i resoldre les qüestions plantejades al grup de tutoria. L'ABL-1 fou un projecte de biologia cel·lular i destinat a aprofundir en els mecanismes implicats en els fenòmens de diferenciació dels miòcits. L'ABL-2 era un projecte conjunt dels professors de Fisiologia vegetal, Bioestadística i Microbiologia. En aquest cas es desitjava que els estudiants plantegessin la resolució a un problema que suposava la manipulació genètica de cèl·lules vegetals per fer possible que produïssin una substància específica, l'escopolamina. Finalment els estudiants havien d'escriure un article original com a projecte final de cada ABL. Els resultats dels dos anys d'experimentació han esta altament satisfactoris, d'acord amb les enquestes completades per alumnes i professors.
Resumo:
A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.
Resumo:
Actualment a l'Estat espanyol s'està implantant el Pla Bolonya per incorporar-se a l'Espai Europeu d'Estudis Superiors (l'EEES). Com a un dels principals objectius, l'EEES pretén homogeneïtzar els estudis i de manera concreta les competències adquirides per qualsevol estudiant independentment d'on hagi realitzat els seus estudis. Per això, existeixen iniciatives europees (com el projecte Tuning) que treballen per definir competències per a totes les titulacions universitàries.El projecte presenta l'anàlisi realitzat sobre vint Universitats de diferents continents per identificar models d'ensenyament-aprenentatge de competències no tècniques. La recerca es centra addicionalment en la competència comunicativa escrita.La font principal de dades ha estat la informació proporcionada a les pàgines Web de les universitats i molt especialment els seus plans d'estudi.
Resumo:
This paper fills a gap in the existing literature on least squareslearning in linear rational expectations models by studying a setup inwhich agents learn by fitting ARMA models to a subset of the statevariables. This is a natural specification in models with privateinformation because in the presence of hidden state variables, agentshave an incentive to condition forecasts on the infinite past recordsof observables. We study a particular setting in which it sufficesfor agents to fit a first order ARMA process, which preserves thetractability of a finite dimensional parameterization, while permittingconditioning on the infinite past record. We describe how previousresults (Marcet and Sargent [1989a, 1989b] can be adapted to handlethe convergence of estimators of an ARMA process in our self--referentialenvironment. We also study ``rates'' of convergence analytically and viacomputer simulation.
Resumo:
This paper studies the short run correlation of inflation and money growth. We study whether a model of learning can do better than a model of rational expectations, we focus our study on countries of high inflation. We take the money process as an exogenous variable, estimated from the data through a switching regime process. We findthat the rational expectations model and the model of learning both offer very good explanations for the joint behavior of money and prices.