86 resultados para LIE GROUP BUNDLES
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Polarized and G-polarized CR manifolds are smooth manifolds endowed with a double structure: a real foliation &em&F&/em& (given by the action of a Lie group G in the G-polarized case) and a transverse CR distribution. Polarized means that (E,J) is roughly speaking invariant by&em&F&/em&. Both structures are therefore linked up. The interplay between them gives to polarized CR-manifolds a very rich geometry. In this paper, we study the properties of polarized and G-polarized manifolds, putting special emphasis on their deformations.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Let F be a free group of rank at least three. We show that some retracts of F previously studied by Martino-Ventura are not equal to the fixed subgroup of any group of automorphisms of F. This shows that, in F, there exist subgroups that are equal to the fixed subgroup of some set of endomorphisms but are not equal to the fixed subgroup of any set of automorphisms. Moreover, we determine the Galois monoids of these retracts, where, by the Galois monoid of a subgroup H of F, we mean the monoid consisting of all endomorphisms of F that fix H.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Here we describe the results of some computational explorations in Thompson's group F. We describe experiments to estimate the cogrowth of F with respect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson's group is amenable. We also describe experiments to estimate the exponential growth rate of F and the rate of escape of symmetric random walks with respect to the standard generating set.
Resumo:
We describe fractal tessellations of the complex plane that arise naturally from Cannon-Thurston maps associated to complete, hyperbolic, once-punctured-torus bundles. We determine the symmetry groups of these tessellations.
Resumo:
We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.
Resumo:
For the many-to-one matching model in which firms have substitutable and quota q-separable preferences over subsets of workers we show that the workers-optimal stable mechanism is group strategy-proof for the workers. In order to prove this result, we also show that under this domain of preferences (which contains the domain of responsive preferences of the college admissions problem) the workers-optimal stable matching is weakly Pareto optimal for the workers and the Blocking Lemma holds as well. We exhibit an example showing that none of these three results remain true if the preferences of firms are substitutable but not quota q-separable.
Resumo:
This paper analyzes secession and group formation in a general model of contest inspired by Esteban and Ray (1999). This model encompasses as special cases rent seeking contests and policy conflicts, where agents lobby over the choice of a policy in a one-dimensional policy space. We show that in both models the grand coalition is the efficient coalition structure and agents are always better off in the grand coalition than in a symmetric coalition structure. Individual agents (in the rent seeking contest) and extremists (in the policy conflict) only have an incentive to secede when they anticipate that their secession will not be followed by additional secessions. Incentives to secede are lower when agents cooperate inside groups. The grand coalition emerges as the unique subgame perfect equilibrium outcome of a sequential game of coalition formation in rent seeking contests.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper reconsiders the evidence on lying or deception presented in Gneezy (2005,American Economic Review). We argue that Gneezy?s data cannot reject the hipótesis that people are one of two kinds: either a person will never lie, or a person will lie whenever she prefers the outcome obtained by lying over the outcome obtained by telling the truth. This implies that so long as lying induces a preferred outcome over truth-telling, a person?s decisión of whether to lie may be completely insensitive to other changes in the induced outcomes, such as exactly how much she monetarily gains relative to how much she hurts an anonymous partner. We run new but similar experiments to those of Gneezy in order to test this hypothesis. We find that our data cannot reject this hypothesis either, but we also discover substantial differences in behavior between our sub jects and Gneezy?s sub jects.
Resumo:
This paper investigates experimentally how organisational decision processes affect the moral motivations of actors inside a firm that must forego profits to reduce harming a third party. In a "vertical" treatment, one insider unilaterally sets the harm-reduction strategy; the other can only accept or quit. In a "horizontal" treatment, the insiders decide by consensus. Our 2-by-2 design also controls for communication effects. In our data, communication makes vertical firms more ethical; voice appears to mitigate "responsibility-alleviation" in that subordinates with voice feel responsible for what their firms do. Vertical firms are then more ethical than the horizontal firms for which our bargaining data reveal a dynamic form of responsibility-alleviation and our chat data indicate a strong "insider-outsider" effect.
Resumo:
Let A be a semiprime 2 and 3-torsion free non-commutative associative algebra. We show that the Lie algebra Der(A) of(associative) derivations of A is strongly non-degenerate, which is a strong form of semiprimeness for Lie algebras, under some additional restrictions on the center of A. This result follows from a description of the quadratic annihilator of a general Lie algebra inside appropriate Lie overalgebras. Similar results are obtained for an associative algebra A with involution and the Lie algebra SDer(A) of involution preserving derivations of A