12 resultados para Isomorphic factorization

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this short note is to prove that a stable separable C*-algebra with real rank zero has the so-called corona factorization property, that is, all the full multiplier projections are properly in finite. Enroute to our result, we consider conditions under which a real rank zero C*-algebra admits an injection of the compact operators (a question already considered in [21]).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore which types of finiteness properties are possible for intersections of geometrically finite groups of isometries in negatively curved symmetric rank one spaces. Our main tool is a twist construction which takes as input a geometrically finite group containing a normal subgroup of infinite index with given finiteness properties and infinite Abelian quotient, and produces a pair of geometrically finite groups whose intersection is isomorphic to the normal subgroup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les factoritzacions de la FFT (Fast Fourier Transform) que presenten un patró d’interconnexió regular entre factors o etapes son conegudes com algorismes paral·lels, o algorismes de Pease, ja que foren originalment proposats per Pease. En aquesta contribució s’han desenvolupat noves factoritzacions amb blocs que presenten el patró d’interconnexió regular de Pease. S’ha mostrat com aquests blocs poden ser obtinguts a una escala prèviament seleccionada. Les noves factoritzacions per ambdues FFT i IFFT (Inverse FFT) tenen dues classes de factors: uns pocs factors del tipus Cooley-Tukey i els nous factors que proporcionen la mateix patró d’interconnexió de Pease en blocs. Per a una factorització donada, els blocs comparteixen dimensions, el patró d’interconnexió etapa a etapa i a més cada un d’ells pot ser calculat independentment dels altres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trace of a square matrix can be defined by a universal property which, appropriately generalized yields the concept of "trace of an endofunctor of a small category". We review the basic definitions of this general concept and give a new construction, the "pretrace category", which allows us to obtain the trace of an endofunctor of a small category as the set of connected components of its pretrace. We show that this pretrace construction determines a finite-product preserving endofunctor of the category of small categories, and we deduce from this that the trace inherits any finite-product algebraic structure that the original category may have. We apply our results to several examples from Representation Theory obtaining a new (indirect) proof of the fact that two finite dimensional linear representations of a finite group are isomorphic if and only if they have the same character.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new expression for the characteristic function of log-spot in Heston model is presented. This expression more clearly exhibits its properties as an analytic characteristic function and allows us to compute the exact domain of the moment generating function. This result is then applied to the volatility smile at extreme strikes and to the control of the moments of spot. We also give a factorization of the moment generating function as product of Bessel type factors, and an approximating sequence to the law of log-spot is deduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[eng] A multi-sided Böhm-Bawerk assignment game (Tejada, to appear) is a model for a multilateral market with a finite number of perfectly complementary indivisible commodities owned by different sellers, and inflexible demand and support functions. We show that for each such market game there is a unique vector of competitive prices for the commodities that is vertical syndication-proof, in the sense that, at those prices, syndication of sellers each owning a different commodity is neither beneficial nor detrimental for the buyers. Since, moreover, the benefits obtained by the agents at those prices correspond to the nucleolus of the market game, we provide a syndication-based foundation for the nucleolus as an appropriate solution concept for market games. For different solution concepts a syndicate can be disadvantageous and there is no escape to Aumman’s paradox (Aumann, 1973). We further show that vertical syndicationproofness and horizontal syndication-proofness – in which sellers of the same commodity collude – are incompatible requirements under some mild assumptions. Our results build on a self-interesting link between multi-sided Böhm-Bawerk assignment games and bankruptcy games (O’Neill, 1982). We identify a particular subset of Böhm-Bawerk assignment games and we show that it is isomorphic to the whole class of bankruptcy games. This isomorphism enables us to show the uniqueness of the vector of vertical syndication-proof prices for the whole class of Böhm-Bawerk assignment market using well-known results of bankruptcy problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compute the properties of a class of charged black holes in antide Sitter space-time, in diverse dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravities, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermodynamic phase structures for these systems, which display classic critical phenomena, including structures isomorphic to the van der WaalsMaxwell liquid-gas system. In that case, the phases are controlled by the universal cusp and swallowtail shapes familiar from catastrophe theory. All of the thermodynamics is consistent with field theory interpretations via holography, where the dual field theories can sometimes be found on the world volumes of coincident rotating branes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[eng] A multi-sided Böhm-Bawerk assignment game (Tejada, to appear) is a model for a multilateral market with a finite number of perfectly complementary indivisible commodities owned by different sellers, and inflexible demand and support functions. We show that for each such market game there is a unique vector of competitive prices for the commodities that is vertical syndication-proof, in the sense that, at those prices, syndication of sellers each owning a different commodity is neither beneficial nor detrimental for the buyers. Since, moreover, the benefits obtained by the agents at those prices correspond to the nucleolus of the market game, we provide a syndication-based foundation for the nucleolus as an appropriate solution concept for market games. For different solution concepts a syndicate can be disadvantageous and there is no escape to Aumman’s paradox (Aumann, 1973). We further show that vertical syndicationproofness and horizontal syndication-proofness – in which sellers of the same commodity collude – are incompatible requirements under some mild assumptions. Our results build on a self-interesting link between multi-sided Böhm-Bawerk assignment games and bankruptcy games (O’Neill, 1982). We identify a particular subset of Böhm-Bawerk assignment games and we show that it is isomorphic to the whole class of bankruptcy games. This isomorphism enables us to show the uniqueness of the vector of vertical syndication-proof prices for the whole class of Böhm-Bawerk assignment market using well-known results of bankruptcy problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two graphs with adjacency matrices $\mathbf{A}$ and $\mathbf{B}$ are isomorphic if there exists a permutation matrix $\mathbf{P}$ for which the identity $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathbf{B}$ holds. Multiplying through by $\mathbf{P}$ and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali--Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler--Lehman algorithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications in both finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to $\Omega(n)$ levels, where $n$ is the number of vertices in the graph.