25 resultados para Intrusion Detection Systems
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Although paraphrasing is the linguistic mechanism underlying many plagiarism cases, little attention has been paid to its analysis in the framework of automatic plagiarism detection. Therefore, state-of-the-art plagiarism detectors find it difficult to detect cases of paraphrase plagiarism. In this article, we analyse the relationship between paraphrasing and plagiarism, paying special attention to which paraphrase phenomena underlie acts of plagiarism and which of them are detected by plagiarism detection systems. With this aim in mind, we created the P4P corpus, a new resource which uses a paraphrase typology to annotate a subset of the PAN-PC-10 corpus for automatic plagiarism detection. The results of the Second International Competition on Plagiarism Detection were analysed in the light of this annotation. The presented experiments show that (i) more complex paraphrase phenomena and a high density of paraphrase mechanisms make plagiarism detection more difficult, (ii) lexical substitutions are the paraphrase mechanisms used the most when plagiarising, and (iii) paraphrase mechanisms tend to shorten the plagiarized text. For the first time, the paraphrase mechanisms behind plagiarism have been analysed, providing critical insights for the improvement of automatic plagiarism detection systems.
Resumo:
En este artículo analizamos el poder disuasorio de los sistemas de inspección y vigilancia puestos en funcionamiento en los Estados Unidos y en la Unión Europea con el objetivo de asegurar que los buques que transportan hidrocarburos cumplan con los requisitos de navegabilidad y mantenimiento exigibles bajo la legislación correspondiente. En particular analizamos las características disuasorias de la legislación norteamericana e internacional a la luz de las enseñanzas de la teoría económica; discutimos las características de los sistemas de inspección y vigilancia implantados tanto en los Estados Unidos como en la Unión Europea; y concluimos recomendando medidas que incrementarían la efectividad de estas prácticas.
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions
Resumo:
This paper deals with fault detection and isolation problems for nonlinear dynamic systems. Both problems are stated as constraint satisfaction problems (CSP) and solved using consistency techniques. The main contribution is the isolation method based on consistency techniques and uncertainty space refining of interval parameters. The major advantage of this method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements, and model errors. Interval calculations bring independence from the assumption of monotony considered by several approaches for fault isolation which are based on observers. An application to a well known alcoholic fermentation process model is presented
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system
Resumo:
The project aims at advancing the state of the art in the use of context information for classification of image and video data. The use of context in the classification of images has been showed of great importance to improve the performance of actual object recognition systems. In our project we proposed the concept of Multi-scale Feature Labels as a general and compact method to exploit the local and global context. The feature extraction from the discriminative probability or classification confidence label field is of great novelty. Moreover the use of a multi-scale representation of the feature labels lead to a compact and efficient description of the context. The goal of the project has been also to provide a general-purpose method and prove its suitability in different image/video analysis problem. The two-year project generated 5 journal publications (plus 2 under submission), 10 conference publications (plus 2 under submission) and one patent (plus 1 pending). Of these publications, a relevant number make use of the main result of this project to improve the results in detection and/or segmentation of objects.
Resumo:
To detect directional couplings from time series various measures based on distances in reconstructed state spaces were introduced. These measures can, however, be biased by asymmetries in the dynamics' structure, noise color, or noise level, which are ubiquitous in experimental signals. Using theoretical reasoning and results from model systems we identify the various sources of bias and show that most of them can be eliminated by an appropriate normalization. We furthermore diminish the remaining biases by introducing a measure based on ranks of distances. This rank-based measure outperforms existing distance-based measures concerning both sensitivity and specificity for directional couplings. Therefore, our findings are relevant for a reliable detection of directional couplings from experimental signals.
Resumo:
Intuitively, music has both predictable and unpredictable components. In this work we assess this qualitative statement in a quantitative way using common time series models fitted to state-of-the-art music descriptors. These descriptors cover different musical facets and are extracted from a large collection of real audio recordings comprising a variety of musical genres. Our findings show that music descriptor time series exhibit a certain predictability not only for short time intervals, but also for mid-term and relatively long intervals. This fact is observed independently of the descriptor, musical facet and time series model we consider. Moreover, we show that our findings are not only of theoretical relevance but can also have practical impact. To this end we demonstrate that music predictability at relatively long time intervals can be exploited in a real-world application, namely the automatic identification of cover songs (i.e. different renditions or versions of the same musical piece). Importantly, this prediction strategy yields a parameter-free approach for cover song identification that is substantially faster, allows for reduced computational storage and still maintains highly competitive accuracies when compared to state-of-the-art systems.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
In this paper, we present a method to deal with the constraints of the underwater medium for finding changes between sequences of underwater images. One of the main problems of underwater medium for automatically detecting changes is the low altitude of the camera when taking pictures. This emphasise the parallax effect between the images as they are not taken exactly at the same position. In order to solve this problem, we are geometrically registering the images together taking into account the relief of the scene
Resumo:
Laser systems can be used to detect very weak optical signals. The physical mechanism is the dynamical process of the relaxation of a laser from an unstable state to a steady stable state. We present an analysis of this process based on the study of the nonlinear relaxation time. Our analytical results are compared with numerical integration of the stochastic differential equations that model this process.
Resumo:
Coalescing compact binary systems are important sources of gravitational waves. Here we investigate the detectability of this gravitational radiation by the recently proposed laser interferometers. The spectral density of noise for various practicable configurations of the detector is also reviewed. This includes laser interferometers with delay lines and Fabry-Prot cavities in the arms, both in standard and dual recycling arrangements. The sensitivity of the detector in all those configurations is presented graphically and the signal-to-noise ratio is calculated numerically. For all configurations we find values of the detector's parameters which maximize the detectability of coalescing binaries, the discussion comprising Newtonian- as well as post-Newtonian-order effects. Contour plots of the signal-to-noise ratio are also presented in certain parameter domains which illustrate the interferometer's response to coalescing binary signals.
Resumo:
We analyze the consequences that the choice of the output of the system has in the efficiency of signal detection. It is shown that the output signal and the signal-to-noise ratio (SNR), used to characterize the phenomenon of stochastic resonance, strongly depend on the form of the output. In particular, the SNR may be enhanced for an adequate output.