44 resultados para Interval Z-transform
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
En l’anàlisi de la supervivència el problema de les dades censurades en un interval es tracta, usualment,via l’estimació per màxima versemblança. Amb l’objectiu d’utilitzar una expressió simplificada de la funció de versemblança, els mètodes estàndards suposen que les condicions que produeixen la censura no afecten el temps de fallada. En aquest article formalitzem les condicions que asseguren la validesa d’aquesta versemblança simplificada. Així, precisem diferents condicions de censura no informativa i definim una condició de suma constant anàloga a la derivada en el context de censura per la dreta. També demostrem que les inferències obtingudes amb la versemblançaa simplificada són correctes quan aquestes condicions són certes. Finalment, tractem la identificabilitat de la funció distribució del temps de fallada a partir de la informació observada i estudiem la possibilitat de contrastar el compliment de la condició de suma constant.
Resumo:
L'Anàlisi de la supervivència s'utilitza en diferents camps per analitzar el temps transcorregut entre dos esdeveniments. El que distingeix l'anàlisi de la supervivència d'altres àrees de l'estadística és que les dades normalment estan censurades. La censura en un interval apareix quan l'esdeveniment final d'interès no és directament observable i només se sap que el temps de fallada està en un interval concret. Un esquema de censura més complex encara apareix quan tant el temps inicial com el temps final estan censurats en un interval. Aquesta situació s'anomena doble censura. En aquest article donem una descripció formal d'un mètode bayesà paramètric per a l'anàlisi de dades censurades en un interval i dades doblement censurades així com unes indicacions clares de la seva utilització o pràctica. La metodologia proposada s'ilustra amb dades d'una cohort de pacients hemofílics que es varen infectar amb el virus VIH a principis dels anys 1980's.
Resumo:
In 1749, Jacques de Vaucanson patented his or tour pour tirer la soie or spindle for silk reeling. In that same year he presented his invention to the Academy of the Sciences in Paris, of which he was a member1. Jacques de Vaucanson was born in Grenoble, France, in 1709, and died in Paris in 1782. In 1741 he had been appointed inspector of silk manufactures by Louis XV. He set about reorganizing the silk industry in France, in considerable difficulty at the time due to foreign competition. Given Vaucanson’s position, his invention was intended to replace the traditional Piémontes method, and had an immediate impact upon the silk industry in France and all over Europe.
Resumo:
Proyecto de investigación realizado a partir de una estancia el grupo de Biotecnología e Ingeniería de Bioprocesos del Imperial College London entre abril y julio del 2007. La catálisis enzimática es una tecnología en continua expansión en el campo de la síntesis y producción de compuestos enantioméricamente puros con actividad biológica. Concretamente las aldolasas son enzimas de gran interés industrial como biocatalizadores en síntesis asimétrica de compuestos quirales ya que catalizan la formación de enlaces C-C mediante reacciones de adición aldólica con una alta regio y estereoespecíficidad. Uno de los compuestos es el precursor de iminociclitoles, que son moléculas de gran potencial terapéutico en el tratamiento de un amplio rango de enfermedades debido a su actividad como inhibidores de glicosidasas y glicosiltransferasas. Sin embargo, para conseguir esta reacción existen problemas de solubilidad de los reactivos y productos en medios homogéneos. Una posible solución es el empleo de medios bifásicos en biorreactores de membrana. Se ha estudiado el potencial de un Biorreactor de Membrana para Biotransformaciones desarrollado en dicha reacción y, a la vez, diferentes estrategias de operación que lleven al máximo rendimiento de producto y/o faciliten su purificación tras la reacción.
Resumo:
El proyecto presentado tiene como finalidad definir e implementar un sistema de gestión documental (CMS) a nivel informático para la empresa FIATC Seguros que proporcione los métodos necesarios para la buena gestión de la documentación.
Resumo:
The generator problem was posed by Kadison in 1967, and it remains open until today. We provide a solution for the class of C*-algebras absorbing the Jiang-Su algebra Z tensorially. More precisely, we show that every unital, separable, Z-stable C*-algebra A is singly generated, which means that there exists an element x є A that is not contained in any proper sub-C*- algebra of A. To give applications of our result, we observe that Z can be embedded into the reduced group C*-algebra of a discrete group that contains a non-cyclic, free subgroup. It follows that certain tensor products with reduced group C*-algebras are singly generated. In particular, C*r (F ∞) ⨂ C*r (F ∞) is singly generated.
Resumo:
Motivated by the work of Mateu, Orobitg, Pérez and Verdera, who proved inequalities of the form $T_*f\lesssim M(Tf)$ or $T_*f\lesssim M^2(Tf)$ for certain singular integral operators $T$, such as the Hilbert or the Beurling transforms, we study the possibility of establishing this type of control for the Cauchy transform along a Lipschitz graph. We show that this is not possible in general, and we give a partial positive result when the graph is substituted by a Jordan curve.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
A model-based approach for fault diagnosis is proposed, where the fault detection is based on checking the consistencyof the Analytical Redundancy Relations (ARRs) using an interval tool. The tool takes into account the uncertainty in theparameters and the measurements using intervals. Faults are explicitly included in the model, which allows for the exploitation of additional information. This information is obtained from partial derivatives computed from the ARRs. The signs in the residuals are used to prune the candidate space when performing the fault diagnosis task. The method is illustrated using a two-tank example, in which these aspects are shown to have an impact on the diagnosis and fault discrimination, since the proposed method goes beyond the structural methods
Resumo:
Scoring rules that elicit an entire belief distribution through the elicitation of point beliefsare time-consuming and demand considerable cognitive e¤ort. Moreover, the results are validonly when agents are risk-neutral or when one uses probabilistic rules. We investigate a classof rules in which the agent has to choose an interval and is rewarded (deterministically) onthe basis of the chosen interval and the realization of the random variable. We formulatean e¢ ciency criterion for such rules and present a speci.c interval scoring rule. For single-peaked beliefs, our rule gives information about both the location and the dispersion of thebelief distribution. These results hold for all concave utility functions.
Resumo:
We represent interval ordered homothetic preferences with a quantitative homothetic utility function and a multiplicative bias. When preferences are weakly ordered (i.e. when indifference is transitive), such a bias equals 1. When indifference is intransitive, the biasing factor is a positive function smaller than 1 and measures a threshold of indifference. We show that the bias is constant if and only if preferences are semiordered, and we identify conditions ensuring a linear utility function. We illustrate our approach with indifference sets on a two dimensional commodity space.
Resumo:
The approximants to regular continued fractions constitute `best approximations' to the numbers they converge to in two ways known as of the first and the second kind.This property of continued fractions provides a solution to Gosper's problem of the batting average: if the batting average of a baseball player is 0.334, what is the minimum number of times he has been at bat? In this paper, we tackle somehow the inverse question: given a rational number P/Q, what is the set of all numbers for which P/Q is a `best approximation' of one or the other kind? We prove that inboth cases these `Optimality Sets' are intervals and we give aprecise description of their endpoints.