18 resultados para Inclusive scoring
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this paper, we study individual incentives to report preferences truthfully for the special case when individuals have dichotomous preferences on the set of alternatives and preferences are aggregated in form of scoring rules. In particular, we show that (a) the Borda Count coincides with Approval Voting on the dichotomous preference domain, (b) the Borda Count is the only strategy-proof scoring rule on the dichotomous preference domain, and (c) if at least three individuals participate in the election, then the dichotomous preference domain is the unique maximal rich domain under which the Borda Count is strategy-proof.
Resumo:
L'estudi té com a objectiu la construcció d'una definició actual i integradora del concepte d'e-learning, que sigui acceptada per la major part de la comunitat científica i que serveixi com a referent pels estudiosos i professionals d'aquesta temàtica.
Resumo:
In most psychological tests and questionnaires, a test score is obtained bytaking the sum of the item scores. In virtually all cases where the test orquestionnaire contains multidimensional forced-choice items, this traditionalscoring method is also applied. We argue that the summation of scores obtained with multidimensional forced-choice items produces uninterpretabletest scores. Therefore, we propose three alternative scoring methods: a weakand a strict rank preserving scoring method, which both allow an ordinalinterpretation of test scores; and a ratio preserving scoring method, whichallows a proportional interpretation of test scores. Each proposed scoringmethod yields an index for each respondent indicating the degree to whichthe response pattern is inconsistent. Analysis of real data showed that withrespect to rank preservation, the weak and strict rank preserving methodresulted in lower inconsistency indices than the traditional scoring method;with respect to ratio preservation, the ratio preserving scoring method resulted in lower inconsistency indices than the traditional scoring method
Resumo:
Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.
Resumo:
In this article we analyze the reasons, within the context of Spanish industrial relations, for trade union members’ active participation in their regional union. The case of Spain is particularly interesting as the unions’ main activity, collective bargaining, is a public good. The text, based on research involving a representative survey of members of a regional branch of the “Workers” Commissions” (Comisiones Obreras) trade union, provides empirical evidence that the union presence in the workplace has a significant influence on members’ propensity for activism. By contrast, the alternative hypothesis based on instrumental reasons appears of little relevance in the Spanish industrial relations context.
Resumo:
Scoring rules that elicit an entire belief distribution through the elicitation of point beliefsare time-consuming and demand considerable cognitive e¤ort. Moreover, the results are validonly when agents are risk-neutral or when one uses probabilistic rules. We investigate a classof rules in which the agent has to choose an interval and is rewarded (deterministically) onthe basis of the chosen interval and the realization of the random variable. We formulatean e¢ ciency criterion for such rules and present a speci.c interval scoring rule. For single-peaked beliefs, our rule gives information about both the location and the dispersion of thebelief distribution. These results hold for all concave utility functions.
Resumo:
We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.
Resumo:
We show that some nonrelativistic quantum chromodynamics color-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and of nonperturbative universal constants once the factorization between the soft and ultrasoft scales is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum numbers and with different heavy flavors. In particular, we can estimate the ratios of the decay widths of bottomonium P-wave states from charmonium data.
Resumo:
Background: Network reconstructions at the cell level are a major development in Systems Biology. However, we are far from fully exploiting its potentialities. Often, the incremental complexity of the pursued systems overrides experimental capabilities, or increasingly sophisticated protocols are underutilized to merely refine confidence levels of already established interactions. For metabolic networks, the currently employed confidence scoring system rates reactions discretely according to nested categories of experimental evidence or model-based likelihood. Results: Here, we propose a complementary network-based scoring system that exploits the statistical regularities of a metabolic network as a bipartite graph. As an illustration, we apply it to the metabolism of Escherichia coli. The model is adjusted to the observations to derive connection probabilities between individual metabolite-reaction pairs and, after validation, to assess the reliability of each reaction in probabilistic terms. This network-based scoring system uncovers very specific reactions that could be functionally or evolutionary important, identifies prominent experimental targets, and enables further confirmation of modeling results. Conclusions: We foresee a wide range of potential applications at different sub-cellular or supra-cellular levels of biological interactions given the natural bipartivity of many biological networks.
Resumo:
EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time–frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts—with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata are then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443–9).