50 resultados para INDEPENDENT COMPONENT ANALYSIS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The use of perturbation and power transformation operations permits the investigation of linear processes in the simplex as in a vectorial space. When the investigated geochemical processes can be constrained by the use of well-known starting point, the eigenvectors of the covariance matrix of a non-centred principalcomponent analysis allow to model compositional changes compared with a reference point.The results obtained for the chemistry of water collected in River Arno (central-northern Italy) have open new perspectives for considering relative changes of the analysed variables and to hypothesise the relative effect of different acting physical-chemical processes, thus posing the basis for a quantitative modelling
Resumo:
Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.
Resumo:
A new drift compensation method based on Common Principal Component Analysis (CPCA) is proposed. The drift variance in data is found as the principal components computed by CPCA. This method finds components that are common for all gasses in feature space. The method is compared in classification task with respect to the other approaches published where the drift direction is estimated through a Principal Component Analysis (PCA) of a reference gas. The proposed new method ¿ employing no specific reference gas, but information from all gases ¿has shown the same performance as the traditional approach with the best-fitted reference gas. Results are shown with data lasting 7-months including three gases at different concentrations for an array of 17 polymeric sensors.
Resumo:
EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time–frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts—with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata are then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443–9).
Resumo:
It is well known the relationship between source separation and blind deconvolution: If a filtered version of an unknown i.i.d. signal is observed, temporal independence between samples can be used to retrieve the original signal, in the same manner as spatial independence is used for source separation. In this paper we propose the use of a Genetic Algorithm (GA) to blindly invert linear channels. The use of GA is justified in the case of small number of samples, where other gradient-like methods fails because of poor estimation of statistics.
Resumo:
In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components.
Resumo:
In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works.
Resumo:
In this paper we present a quantitative comparisons of different independent component analysis (ICA) algorithms in order to investigate their potential use in preprocessing (such as noise reduction and feature extraction) the electroencephalogram (EEG) data for early detection of Alzhemier disease (AD) or discrimination between AD (or mild cognitive impairment, MCI) and age-match control subjects.
Resumo:
In this paper, a new algorithm for blind inversion of Wiener systems is presented. The algorithm is based on minimization of mutual information of the output samples. This minimization is done through a Minimization-Projection (MP) approach, using a nonparametric “gradient” of mutual information.
Resumo:
This paper proposes a very simple method for increasing the algorithm speed for separating sources from PNL mixtures or invertingWiener systems. The method is based on a pertinent initialization of the inverse system, whose computational cost is very low. The nonlinear part is roughly approximated by pushing the observations to be Gaussian; this method provides a surprisingly good approximation even when the basic assumption is not fully satisfied. The linear part is initialized so that outputs are decorrelated. Experiments shows the impressive speed improvement.
Resumo:
In this present work, we are proposing a characteristics reduction system for a facial biometric identification system, using transformed domains such as discrete cosine transformed (DCT) and discrete wavelets transformed (DWT) as parameterization; and Support Vector Machines (SVM) and Neural Network (NN) as classifiers. The size reduction has been done with Principal Component Analysis (PCA) and with Independent Component Analysis (ICA). This system presents a similar success results for both DWT-SVM system and DWT-PCA-SVM system, about 98%. The computational load is improved on training mode due to the decreasing of input’s size and less complexity of the classifier.
Resumo:
Does Independent Component Analysis (ICA) denature EEG signals? We applied ICA to two groups of subjects (mild Alzheimer patients and control subjects). The aim of this study was to examine whether or not the ICA method can reduce both group di®erences and within-subject variability. We found that ICA diminished Leave-One- Out root mean square error (RMSE) of validation (from 0.32 to 0.28), indicative of the reduction of group di®erence. More interestingly, ICA reduced the inter-subject variability within each group (¾ = 2:54 in the ± range before ICA, ¾ = 1:56 after, Bartlett p = 0.046 after Bonfer- roni correction). Additionally, we present a method to limit the impact of human error (' 13:8%, with 75.6% inter-cleaner agreement) during ICA cleaning, and reduce human bias. These ¯ndings suggests the novel usefulness of ICA in clinical EEG in Alzheimer's disease for reduction of subject variability.
Resumo:
In this paper we propose the use of the independent component analysis (ICA) [1] technique for improving the classification rate of decision trees and multilayer perceptrons [2], [3]. The use of an ICA for the preprocessing stage, makes the structure of both classifiers simpler, and therefore improves the generalization properties. The hypothesis behind the proposed preprocessing is that an ICA analysis will transform the feature space into a space where the components are independent, and aligned to the axes and therefore will be more adapted to the way that a decision tree is constructed. Also the inference of the weights of a multilayer perceptron will be much easier because the gradient search in the weight space will follow independent trajectories. The result is that classifiers are less complex and on some databases the error rate is lower. This idea is also applicable to regression
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
In order to obtain a high-resolution Pleistocene stratigraphy, eleven continuouslycored boreholes, 100 to 220m deep were drilled in the northern part of the PoPlain by Regione Lombardia in the last five years. Quantitative provenanceanalysis (QPA, Weltje and von Eynatten, 2004) of Pleistocene sands was carriedout by using multivariate statistical analysis (principal component analysis, PCA,and similarity analysis) on an integrated data set, including high-resolution bulkpetrography and heavy-mineral analyses on Pleistocene sands and of 250 majorand minor modern rivers draining the southern flank of the Alps from West toEast (Garzanti et al, 2004; 2006). Prior to the onset of major Alpine glaciations,metamorphic and quartzofeldspathic detritus from the Western and Central Alpswas carried from the axial belt to the Po basin longitudinally parallel to theSouthAlpine belt by a trunk river (Vezzoli and Garzanti, 2008). This scenariorapidly changed during the marine isotope stage 22 (0.87 Ma), with the onset ofthe first major Pleistocene glaciation in the Alps (Muttoni et al, 2003). PCA andsimilarity analysis from core samples show that the longitudinal trunk river at thistime was shifted southward by the rapid southward and westward progradation oftransverse alluvial river systems fed from the Central and Southern Alps.Sediments were transported southward by braided river systems as well as glacialsediments transported by Alpine valley glaciers invaded the alluvial plain.Kew words: Detrital modes; Modern sands; Provenance; Principal ComponentsAnalysis; Similarity, Canberra Distance; palaeodrainage