3 resultados para III-V Semiconductors

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, electrical measurements show that the breakdown voltage,BVDG, of InP HEMTs increases following exposure to H2. This BVDG shift is nonrecoverable. The increase in BVDG is found to be due to a decrease in the carrier concentration in the extrinsic portion of the device.We provide evidence that H2 reacts with the exposed InAlAs surface in the extrinsic region next to the gate, changing the underlying carrier concentration. Hall measurements of capped and uncapped HEMT samples show that the decrease in sheet carrier concentration can be attributed to a modification of the exposed InAlAs surface. Consistent with this, XPS experiments on uncapped heterostructures give evidence of As loss from the InAlAs surface upon exposure to hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we obtain the necessary and sufficient conditions for embedding results of different function classes. The main result is a criterion for embedding theorems for the so-called generalized Weyl-Nikol'skii class and the generalized Lipschitz class. To define the Weyl-Nikol'skii class, we use the concept of a (λ,β)-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, we give estimates of norms and moduli of smoothness of transformed Fourier series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemisorption of group-III metal adatoms on Si(111) and Ge(111) has been studied through the ab initio Hartree-Fock method including nonempirical pseudopotentials and using cluster models to simulate the surface. Three different high-symmetry sites (atop, eclipsed, and open) have been considered by using X4H9, X4H7, and X6H9 (X=Si,Ge) cluster models. In a first step, ideal surface geometries have been used. Metal-induced reconstruction upon chemisorption has also been taken into account. Equilibrium distances, binding energies, and vibrational frequencies have been obtained and compared with available experimental data. From binding-energy considerations, the atop and eclipsed sites seem to be the most favorable ones and thus a coadsorption picture may be suggested. Group-III metals exhibit a similar behavior and the same is true for Si(111) and Ge(111) surfaces when chemisorption is considered.