9 resultados para Horava-Lifshitz Bianchi
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
In this paper we examine in detail the implementation, with its associated difficulties, of the Killing conditions and gauge fixing into the variational principle formulation of Bianchi-type cosmologies. We address problems raised in the literature concerning the Lagrangian and the Hamiltonian formulations: We prove their equivalence, make clear the role of the homogeneity preserving diffeomorphisms in the phase space approach, and show that the number of physical degrees of freedom is the same in the Hamiltonian and Lagrangian formulations. Residual gauge transformations play an important role in our approach, and we suggest that Poincaré transformations for special relativistic systems can be understood as residual gauge transformations. In the Appendixes, we give the general computation of the equations of motion and the Lagrangian for any Bianchi-type vacuum metric and for spatially homogeneous Maxwell fields in a nondynamical background (with zero currents). We also illustrate our counting of degrees of freedom in an appendix.
Resumo:
L’objectiu d’aquest projecte és ampliar la plataforma Starviewer integrant els mòdulsnecessaris per donar suport al diagnòstic de l’estenosi de caròtida permetentinterpretar de forma més fàcil les imatges Angiografia per Ressonància Magnètica(ARM). La plataforma Starviewer és un entorn informàtic que integra funcionalitatsbàsiques i avançades pel processament i la visualització d’imatges mèdiques. Estàdesenvolupat pel Grup d’Informàtica Gràfica de la Universitat de Girona i l’Institut deDiagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta. Una de les limitacions de la plataforma és el no suportar el tractament de lesions delsistema vascular. Per això ens proposem a corregir-ho i ampliar les seves extensionsper a poder diagnosticar l’estenosi de caròtida
Resumo:
Sequential randomized prediction of an arbitrary binary sequence isinvestigated. No assumption is made on the mechanism of generating the bit sequence. The goal of the predictor is to minimize its relative loss, i.e., to make (almost) as few mistakes as the best ``expert'' in a fixed, possibly infinite, set of experts. We point out a surprising connection between this prediction problem and empirical process theory. First, in the special case of static (memoryless) experts, we completely characterize the minimax relative loss in terms of the maximum of an associated Rademacher process. Then we show general upper and lower bounds on the minimaxrelative loss in terms of the geometry of the class of experts. As main examples, we determine the exact order of magnitude of the minimax relative loss for the class of autoregressive linear predictors and for the class of Markov experts.
Resumo:
We investigate on-line prediction of individual sequences. Given a class of predictors, the goal is to predict as well as the best predictor in the class, where the loss is measured by the self information (logarithmic) loss function. The excess loss (regret) is closely related to the redundancy of the associated lossless universal code. Using Shtarkov's theorem and tools from empirical process theory, we prove a general upper bound on the best possible (minimax) regret. The bound depends on certain metric properties of the class of predictors. We apply the bound to both parametric and nonparametric classes ofpredictors. Finally, we point out a suboptimal behavior of the popular Bayesian weighted average algorithm.
Resumo:
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
Resumo:
With the aid of the Landau-Lifshitz theory for thermodynamic fluctuations we estimate and comment on the fluctuations in the rates of mass, angular momentum, and other relevant quantities of massive Schwarzschild and Kerr black holes.
Resumo:
We examine plane-symmetric cosmological solutions to Einstein's equations which can be generated by the "soliton" technique, using the homogeneous Bianchi solutions as seeds and arbitrary numbers of real or complex poles. In some circumstances, these solutions can be interpreted as "incipient" gravitational waves on the Bianchi background. At early times they look like nonlinear inhomogeneities propagating at nearly the speed of light ("gravisolitons"), while at late times they look like cosmological gravitational waves.
Resumo:
The Einstein equations coupled with a cloud of geometric strings for a five-dimensional Bianchi type-I cosmological model are studied. The cosmological consequences of having strings along the fifth dimension are examined. Particular solutions with dynamical compactifications of the extra dimensions and compatibility with expanding three-dimensional spaces are presented.
Resumo:
Differentiation between photoallergenic and phototoxic reactions induced by low molecular weight compounds represents a current problem. The use of eratinocytes as a potential tool for the detection of photoallergens as opposed to photoirritants is considered an interesting strategy for developing in vitro methods. We have previously demonstrated the possibility to use the human keratinocyte cell line NCTC2455 and the production of interleukin-18 (IL-18) to screen low molecular weight sensitizers. The purpose of this work was to explore the possibility to use the NCTC2544 assay to identify photoallergens and discriminate from phototoxic chemicals. First, we identified suitable condition of UV-irradiation (3.5 J/cm2) by investigating the effect of UVAirradiation on intracellular IL-18 on untreated or chloropromazine (a representative phototoxic compound)- treated NCTC2544 cells. Then, the effect of UVA-irradiation over NCTC2544 cells treated with increasing concentrations of 15 compounds including photoallergens (benzophenone, 4-ter-butyl-4-methoxydibenzoylmethane, 2-ethylexyl-p-methoxycinnamate, ketoprofen, 6-methylcumarin); photoirritant and photoallergen (4-aminobenzoic acid, chlorpromazine, promethazine); photoirritants (acridine, ibuprofen, 8-methoxypsoralen, retinoic acid); and negative compounds (lactic acid, SDS and p-phenilendiamine) was investigated. Twenty-four hours after exposure, cytotoxicity was evaluated by the MTT assay or LDH leakage, while ELISA was used to measure the production of IL-18. At the maximal concentration assayed with non-cytotoxic effects (CV80 under irradiated condition), all tested photoallergens induced a significant and a dose-dependent increase of intracellular IL-18 following UVA irratiation, whereas photoirritants failed. We suggest that this system may be useful for the in vitro evaluation of the photoallergic potential of chemicals.