10 resultados para Harmonic Analysis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined
Resumo:
Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined
Resumo:
We study the space of bandlimited Lipschitz functions in one variable. In particular we provide a geometrical description of interpolating and sampling sequences for this space. We also give a description of the trace of such functions to sequences of critical density in terms of a cancellation condition.
Resumo:
We study a generalization of the classical Marcinkiewicz-Zygmund inequalities. We relate this problem to the sampling sequences in the Paley-Wiener space and by using this analogy we give sharp necessary and sufficient computable conditions for a family of points to satisfy the Marcinkiewicz-Zygmund inequalities.
Resumo:
By theorems of Ferguson and Lacey ($d=2$) and Lacey and Terwilleger ($d>2$), Nehari's theorem is known to hold on the polydisc $\D^d$ for $d>1$, i.e., if $H_\psi$ is a bounded Hankel form on $H^2(\D^d)$ with analytic symbol $\psi$, then there is a function $\varphi$ in $L^\infty(\T^d)$ such that $\psi$ is the Riesz projection of $\varphi$. A method proposed in Helson's last paper is used to show that the constant $C_d$ in the estimate $\|\varphi\|_\infty\le C_d \|H_\psi\|$ grows at least exponentially with $d$; it follows that there is no analogue of Nehari's theorem on the infinite-dimensional polydisc.
Resumo:
We study the relationship between stable sampling sequences for bandlimited functions in $L^p(\R^n)$ and the Fourier multipliers in $L^p$. In the case that the sequence is a lattice and the spectrum is a fundamental domain for the lattice the connection is complete. In the case of irregular sequences there is still a partial relationship.
Resumo:
We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It is in the style of Beurling's characterization of sets of sampling for bandlimited functions and extends significantly the known characterization of Gabor frames 'without inequalities' from lattices to non-uniform sets.
Resumo:
A study was conducted on the methods of basis set superposition error (BSSE)-free geometry optimization and frequency calculations in clusters larger than a dimer. In particular, three different counterpoise schemes were critically examined. It was shown that the counterpoise-corrected supermolecule energy can be easily obtained in all the cases by using the many-body partitioning of energy