7 resultados para GUIDED TISSUE REGENERATION
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.
Resumo:
Selective reinnervation of peripheral targets after nerve injury might be assessed by injecting a first tracer in a target before nerve injury to label the original neuronal population, and applying a second tracer after the regeneration period to label the regenerated population. However, altered uptake of tracer, fading, and cell death may interfere with the results. Furthermore, if the first tracer injected remains in the target tissue, available for 're-uptake' by misdirected regenerating axons, which originally innervated another region, then the identification of the original population would be confused. With the aim of studying this problem, the sciatic nerve of adult rats was sectioned and sutured. After 3 days, to allow the distal axon to degenerate avoiding immediate retrograde transport, one of the dyes: Fast Blue (FB), Fluoro-Gold (FG) or Diamidino Yellow (DY), was injected into the tibial branch of the sciatic nerve, or in the skin of one of the denervated digits. Rats survived 2-3 months. The results showed labelled dorsal root ganglion (DRG) cells and motoneurones, indicating that late re-uptake of a first tracer occurs. This phenomenon must be considered when the model of sequential labelling is used for studying the accuracy of peripheral reinnervation.
Resumo:
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
Resumo:
Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.
Resumo:
Report for the scientific sojourn at the Imperial College of London, United Kingdom, from 2007 to 2009. PTEN is a tumour suppressor enzyme that plays important roles in the PI3K pathway which regulates growth, proliferation and survival and is thus related to many human disorders such as diabetes, neurodegenerative diseases, cardiovascular complications and cancer. It is hence of great interest to understand in detail its molecular behaviour and to find small molecules that can switch on/off its activity. For this purpose, metal complexes have been synthesized and preliminary studies in vivo show that all are capable of inhibiting PTEN.
Resumo:
Emergent molecular measurement methods, such as DNA microarray, qRTPCR, andmany others, offer tremendous promise for the personalized treatment of cancer. Thesetechnologies measure the amount of specific proteins, RNA, DNA or other moleculartargets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumorspecimens are heterogeneous; an individual specimen typically contains unknownamounts of multiple tissues types. Thus, the measured molecular concentrations resultfrom an unknown mixture of tissue types, and must be normalized to account for thecomposition of the mixture.For example, a breast tumor biopsy may contain normal, dysplastic and cancerousepithelial cells, as well as stromal components (fatty and connective tissue) and bloodand lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic andcancerous epithelial cells. The remaining tissue components serve to “contaminate”the signal of interest. The proportion of each of the tissue components changes asa function of patient characteristics (e.g., age), and varies spatially across the tumorregion. Because each of the tissue components produces a different molecular signature,and the amount of each tissue type is specimen dependent, we must estimate the tissuecomposition of the specimen, and adjust the molecular signal for this composition.Using the idea of a chemical mass balance, we consider the total measured concentrationsto be a weighted sum of the individual tissue signatures, where weightsare determined by the relative amounts of the different tissue types. We develop acompositional source apportionment model to estimate the relative amounts of tissuecomponents in a tumor specimen. We then use these estimates to infer the tissuespecificconcentrations of key molecular targets for sub-typing individual tumors. Weanticipate these specific measurements will greatly improve our ability to discriminatebetween different classes of tumors, and allow more precise matching of each patient tothe appropriate treatment
Resumo:
This paper presents a tool for the analysis and regeneration of Web contents, implemented through XML and Java. At the moment, the Web content delivery from server to clients is carried out without taking into account clients' characteristics. Heterogeneous and diverse characteristics, such as user's preferences, different capacities of the client's devices, different types of access, state of the network and current load on the server, directly affect the behavior of Web services. On the other hand, the growing use of multimedia objects in the design of Web contents is made without taking into account this diversity and heterogeneity. It affects, even more, the appropriate content delivery. Thus, the objective of the presented tool is the treatment of Web pages taking into account the mentioned heterogeneity and adapting contents in order to improve the performance on the Web