55 resultados para Functions of real variables
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
[cat] El concepte de joc cooperatiu amb large core és introduït per Sharkey (1982) i el de Population Monotonic Allocation Scheme és definit per Sprumont (1990). Inspirat en aquests conceptes, Moulin (1990) introdueix la noció de large monotonic core donant una caracterització per a jocs de tres jugadors. En aquest document provem que tots els jocs amb large monotonic core són convexes. A més, donem un criteri efectiu per determinar si un joc té large monotonic core o no, i daquí obtenim una caracterització pel cas de quatre jugadors.
Resumo:
[cat] El concepte de joc cooperatiu amb large core és introduït per Sharkey (1982) i el de Population Monotonic Allocation Scheme és definit per Sprumont (1990). Inspirat en aquests conceptes, Moulin (1990) introdueix la noció de large monotonic core donant una caracterització per a jocs de tres jugadors. En aquest document provem que tots els jocs amb large monotonic core són convexes. A més, donem un criteri efectiu per determinar si un joc té large monotonic core o no, i daquí obtenim una caracterització pel cas de quatre jugadors.
Resumo:
Un juego de asignación se define por una matriz A; donde cada fila representa un comprador y cada columna un vendedor. Si el comprador i se empareja a un vendedor j; el mercado produce aij unidades de utilidad. Estudiamos los juegos de asignación de Monge, es decir, aquellos juegos bilaterales de asignación en los cuales la matriz satisface la propiedad de Monge. Estas matrices pueden caracterizarse por el hecho de que en cualquier submatriz 2x2 un emparejamiento óptimo está situado en la diagonal principal. Para mercados cuadrados, describimos sus núcleos utilizando sólo la parte central tridiagonal de elementos de la matriz. Obtenemos una fórmula cerrada para el reparto óptimo de los compradores dentro del núcleo y para el reparto óptimo de los vendedores dentro del núcleo. Analizamos también los mercados no cuadrados reduciéndolos a matrices cuadradas apropiadas.
Resumo:
[eng] In the context of cooperative TU-games, and given an order of players, we consider the problem of distributing the worth of the grand coalition as a sequentia decision problem. In each step of process, upper and lower bounds for the payoff of the players are required related to successive reduced games. Sequentially compatible payoffs are defined as those allocation vectors that meet these recursive bounds. The core of the game is reinterpreted as a set of sequentally compatible payoffs when the Davis-Maschler reduced game is considered (Th.1). Independently of the reduction, the core turns out to be the intersections of the family of the sets of sequentially compatible payoffs corresponding to the different possible orderings (Th.2), so it is in some sense order-independent. Finally, we analyze advantagenous properties for the first player
Resumo:
[eng] In the context of cooperative TU-games, and given an order of players, we consider the problem of distributing the worth of the grand coalition as a sequentia decision problem. In each step of process, upper and lower bounds for the payoff of the players are required related to successive reduced games. Sequentially compatible payoffs are defined as those allocation vectors that meet these recursive bounds. The core of the game is reinterpreted as a set of sequentally compatible payoffs when the Davis-Maschler reduced game is considered (Th.1). Independently of the reduction, the core turns out to be the intersections of the family of the sets of sequentially compatible payoffs corresponding to the different possible orderings (Th.2), so it is in some sense order-independent. Finally, we analyze advantagenous properties for the first player
Resumo:
Un juego de asignación se define por una matriz A; donde cada fila representa un comprador y cada columna un vendedor. Si el comprador i se empareja a un vendedor j; el mercado produce aij unidades de utilidad. Estudiamos los juegos de asignación de Monge, es decir, aquellos juegos bilaterales de asignación en los cuales la matriz satisface la propiedad de Monge. Estas matrices pueden caracterizarse por el hecho de que en cualquier submatriz 2x2 un emparejamiento óptimo está situado en la diagonal principal. Para mercados cuadrados, describimos sus núcleos utilizando sólo la parte central tridiagonal de elementos de la matriz. Obtenemos una fórmula cerrada para el reparto óptimo de los compradores dentro del núcleo y para el reparto óptimo de los vendedores dentro del núcleo. Analizamos también los mercados no cuadrados reduciéndolos a matrices cuadradas apropiadas.
Resumo:
We show how to calibrate CES production and utility functions when indirect taxation affecting inputs and consumption is present. These calibrated functions can then be used in computable general equilibrium models. Taxation modifies the standard calibration procedures since any taxed good has two associated prices and a choice of reference value units has to be made. We also provide an example of computer code to solve the calibration of CES utilities under two alternate normalizations. To our knowledge, this paper fills a methodological gap in the CGE literature.
Resumo:
The well-known lack of power of unit root tests has often been attributed to the shortlength of macroeconomic variables and also to DGP s that depart from the I(1)-I(0)alternatives. This paper shows that by using long spans of annual real GNP and GNPper capita (133 years) high power can be achieved, leading to the rejection of both theunit root and the trend-stationary hypothesis. This suggests that possibly neither modelprovides a good characterization of these data. Next, more flexible representations areconsidered, namely, processes containing structural breaks (SB) and fractional ordersof integration (FI). Economic justification for the presence of these features in GNP isprovided. It is shown that the latter models (FI and SB) are in general preferred to theARIMA (I(1) or I(0)) ones. As a novelty in this literature, new techniques are appliedto discriminate between FI and SB models. It turns out that the FI specification ispreferred, implying that GNP and GNP per capita are non-stationary, highly persistentbut mean-reverting series. Finally, it is shown that the results are robust when breaksin the deterministic component are allowed for in the FI model. Some macroeconomicimplications of these findings are also discussed.
Resumo:
We prove some results concerning the possible configuration s of Herman rings for transcendental meromorphic functions. We show that one pole is enough to obtain cycles of Herman rings of arbitrary period a nd give a sufficient condition for a configuration to be realizable.
Resumo:
We study the possibility of splitting any bounded analytic function $f$ with singularities in a closed set $E\cup F$ as a sum of two bounded analytic functions with singularities in $E$ and $F$ respectively. We obtain some results under geometric restrictions on the sets $E$ and $F$ and we provide some examples showing the sharpness of the positive results.
Resumo:
The most suitable method for estimation of size diversity is investigated. Size diversity is computed on the basis of the Shannon diversity expression adapted for continuous variables, such as size. It takes the form of an integral involving the probability density function (pdf) of the size of the individuals. Different approaches for the estimation of pdf are compared: parametric methods, assuming that data come from a determinate family of pdfs, and nonparametric methods, where pdf is estimated using some kind of local evaluation. Exponential, generalized Pareto, normal, and log-normal distributions have been used to generate simulated samples using estimated parameters from real samples. Nonparametric methods include discrete computation of data histograms based on size intervals and continuous kernel estimation of pdf. Kernel approach gives accurate estimation of size diversity, whilst parametric methods are only useful when the reference distribution have similar shape to the real one. Special attention is given for data standardization. The division of data by the sample geometric mean is proposedas the most suitable standardization method, which shows additional advantages: the same size diversity value is obtained when using original size or log-transformed data, and size measurements with different dimensionality (longitudes, areas, volumes or biomasses) may be immediately compared with the simple addition of ln k where kis the dimensionality (1, 2, or 3, respectively). Thus, the kernel estimation, after data standardization by division of sample geometric mean, arises as the most reliable and generalizable method of size diversity evaluation
Resumo:
We prove that every transcendental meromorphic map $f$ with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton's method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton's method for entire maps are simply connected, which solves a well-known open question.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."