63 resultados para Finite model generation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Two graphs with adjacency matrices $\mathbf{A}$ and $\mathbf{B}$ are isomorphic if there exists a permutation matrix $\mathbf{P}$ for which the identity $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathbf{B}$ holds. Multiplying through by $\mathbf{P}$ and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali--Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler--Lehman algorithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications in both finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to $\Omega(n)$ levels, where $n$ is the number of vertices in the graph.
Resumo:
The first generation models of currency crises have often been criticized because they predict that, in the absence of very large triggering shocks, currency attacks should be predictable and lead to small devaluations. This paper shows that these features of first generation models are not robust to the inclusion of private information. In particular, this paper analyzes a generalization of the Krugman-Flood-Garber (KFG) model, which relaxes the assumption that all consumers are perfectly informed about the level of fundamentals. In this environment, the KFG equilibrium of zero devaluation is only one of many possible equilibria. In all the other equilibria, the lack of perfect information delays the attack on the currency past the point at which the shadow exchange rate equals the peg, giving rise to unpredictable and discrete devaluations.
Resumo:
Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.
Resumo:
[cat] En aquest treball es presenta un model eclèctic que sistematitza la dinàmica de les crisis que s’autoconfimen, usant els principals aspectes de les tres tipologies dels models de crisis canviàries de tercera generació, amb la finalitat de descriure els fets que precipiten la renúncia al manteniment d’una paritat fixada. Les contribucions més notables són les implicacions per a la política econòmica, així com la pèrdua del paper del tipus de canvi com instrument d’ajust macroeconòmic, quan els efectes de balanç són una possibilitat real.
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
[cat] En aquest treball es presenta un model eclèctic que sistematitza la dinàmica de les crisis que s’autoconfimen, usant els principals aspectes de les tres tipologies dels models de crisis canviàries de tercera generació, amb la finalitat de descriure els fets que precipiten la renúncia al manteniment d’una paritat fixada. Les contribucions més notables són les implicacions per a la política econòmica, així com la pèrdua del paper del tipus de canvi com instrument d’ajust macroeconòmic, quan els efectes de balanç són una possibilitat real.
Resumo:
We present a nonequlibrium approach for the study of a flexible bilayer whose two components induce distinct curvatures. In turn, the two components are interconverted by an externally promoted reaction. Phase separation of the two species in the surface results in the growth of domains characterized by different local composition and curvature modulations. This domain growth is limited by the effective mixing due to the interconversion reaction, leading to a finite characteristic domain size. In addition to these effects, first introduced in our earlier work [ Phys. Rev. E 71 051906 (2005)], the important new feature is the assumption that the reactive process actively affects the local curvature of the bilayer. Specifically, we suggest that a force energetically activated by external sources causes a modification of the shape of the membrane at the reaction site. Our results show the appearance of a rich and robust dynamical phenomenology that includes the generation of traveling and/or oscillatory patterns. Linear stability analysis, amplitude equations, and numerical simulations of the model kinetic equations confirm the occurrence of these spatiotemporal behaviors in nonequilibrium reactive bilayers.
Resumo:
The coupling between topography, waves and currents in the surf zone may selforganize to produce the formation of shore-transverse or shore-oblique sand bars on an otherwise alongshore uniform beach. In the absence of shore-parallel bars, this has been shown by previous studies of linear stability analysis, but is now extended to the finite-amplitude regime. To this end, a nonlinear model coupling wave transformation and breaking, a shallow-water equations solver, sediment transport and bed updating is developed. The sediment flux consists of a stirring factor multiplied by the depthaveraged current plus a downslope correction. It is found that the cross-shore profile of the ratio of stirring factor to water depth together with the wave incidence angle primarily determine the shape and the type of bars, either transverse or oblique to the shore. In the latter case, they can open an acute angle against the current (upcurrent oriented) or with the current (down-current oriented). At the initial stages of development, both the intensity of the instability which is responsible for the formation of the bars and the damping due to downslope transport grow at a similar rate with bar amplitude, the former being somewhat stronger. As bars keep on growing, their finite-amplitude shape either enhances downslope transport or weakens the instability mechanism so that an equilibrium between both opposing tendencies occurs, leading to a final saturated amplitude. The overall shape of the saturated bars in plan view is similar to that of the small-amplitude ones. However, the final spacings may be up to a factor of 2 larger and final celerities can also be about a factor of 2 smaller or larger. In the case of alongshore migrating bars, the asymmetry of the longshore sections, the lee being steeper than the stoss, is well reproduced. Complex dynamics with merging and splitting of individual bars sometimes occur. Finally, in the case of shore-normal incidence the rip currents in the troughs between the bars are jet-like while the onshore return flow is wider and weaker as is observed in nature.
Resumo:
Social Accounting Matrices (SAM) are normally used to analyse the income generation process. They are also useful, however, for analysing the cost transmission and price formation mechanisms. For price contributions, Roland-Holst and Sancho (1995) used the SAM structure to analyse the price and cost linkages through a representation of the interdependence between activities, households and factors. This paper is a further analysis of the cost transmission mechanisms, in which I add the capital account to the endogenous components of the Roland-Holst and Sancho approach. By doing this I reflect the responses of prices to the exogenous shocks in savings and investment. I also present an additive decomposition of the global price effects into categories of interdependence that isolates the impact on price levels of shocks in the capital account. I use a 1994 Social Accounting Matrix to make an empirical application of the Catalan economy. Keywords: social accounting matrix, cost linkages, price transmission, capital account. JEL Classification: C63, C69, D59.
Resumo:
We analyze the two-dimensional parabolic-elliptic Patlak-Keller-Segel model in the whole Euclidean space R2. Under the hypotheses of integrable initial data with finite second moment and entropy, we first show local in time existence for any mass of "free-energy solutions", namely weak solutions with some free energy estimates. We also prove that the solution exists as long as the entropy is controlled from above. The main result of the paper is to show the global existence of free-energy solutions with initial data as before for the critical mass 8 Π/Χ. Actually, we prove that solutions blow-up as a delta dirac at the center of mass when t→∞ keeping constant their second moment at any time. Furthermore, all moments larger than 2 blow-up as t→∞ if initially bounded.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Laboratory of Archaeometry del National Centre of Scientific Research “Demokritos” d’Atenes, Grècia, entre juny i setembre 2006. Aquest estudi s’emmarca dins d’un context més ampli d’estudi del canvi tecnològic que es documenta en la producció d’àmfores de tipologia romana durant els segles I aC i I dC en els territoris costaners de Catalunya. Una part d’aquest estudi contempla el càlcul de les propietats mecàniques d’aquestes àmfores i la seva avaluació en funció de la tipologia amforal, a partir de l’Anàlisi d’Elements Finits (AEF). L’AEF és una aproximació numèrica que té el seu origen en les ciències d’enginyeria i que ha estat emprada per estimar el comportament mecànic d’un model en termes, per exemple, de deformació i estrès. Així, un objecte, o millor dit el seu model, es dividit en sub-dominis anomenats elements finits, als quals se’ls atribueixen les propietats mecàniques del material en estudi. Aquests elements finits estan connectats formant una xarxa amb constriccions que pot ser definida. En el cas d’aplicar una força determinada a un model, el comportament de l’objecte pot ser estimat mitjançant el conjunt d’equacions lineals que defineixen el rendiment dels elements finits, proporcionant una bona aproximació per a la descripció de la deformació estructural. Així, aquesta simulació per ordinador suposa una important eina per entendre la funcionalitat de ceràmiques arqueològiques. Aquest procediment representa un model quantitatiu per predir el trencament de l’objecte ceràmic quan aquest és sotmès a diferents condicions de pressió. Aquest model ha estat aplicat a diferents tipologies amforals. Els resultats preliminars mostren diferències significatives entre la tipologia pre-romana i les tipologies romanes, així com entre els mateixos dissenys amforals romans, d’importants implicacions arqueològiques.
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
Minimal models for the explanation of decision-making in computational neuroscience are based on the analysis of the evolution for the average firing rates of two interacting neuron populations. While these models typically lead to multi-stable scenario for the basic derived dynamical systems, noise is an important feature of the model taking into account finite-size effects and robustness of the decisions. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker-Planck partial differential equation. In particular, we discuss the existence, positivity and uniqueness for the solution of the stationary equation, as well as for the time evolving problem. Moreover, we prove convergence of the solution to the the stationary state representing the probability distribution of finding the neuron families in each of the decision states characterized by their average firing rates. Finally, we propose a numerical scheme allowing for simulations performed on the Fokker-Planck equation which are in agreement with those obtained recently by a moment method applied to the stochastic differential system. Our approach leads to a more detailed analytical and numerical study of this decision-making model in computational neuroscience.
Resumo:
La sostenibilitat del model energètic de Catalunya es veu condicionada per aspectes com la dependència energètica, la seguretat de subministrament, l’eficiència energètica, els impactes ambientals i la demanda creixent. D’altra banda, la incorporació d’energia renovable en el mix energètic implica una major autonomia energètica, seguretat de subministrament a llarg termini, i eficiència energètica, així com un menor impacte ambiental. Tanmateix, la contribució en el sistema elèctric d’un volum ja important i creixent d’energia renovable requereix una complexa tasca d’integració a nivell tècnic i econòmic. Per aconseguir-ho, és necessari desenvolupar una regulació estable que complementi el procés de liberalització del sector amb l’objectiu d’acomodar la generació renovable en un model energètic sostenible. La (in)formació i participació de la demanda es presenta com una condició clau per engegar el camí cap a una nova cultura energètica.