18 resultados para Farkas lemma

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study situations of allocating positions or jobs to students or workers based on priorities. An example is the assignment of medical students to hospital residencies on the basis of one or several entrance exams. For markets without couples, e.g., for ``undergraduate student placement,'' acyclicity is a necessary and sufficient condition for the existence of a fair and efficient placement mechanism (Ergin, 2002). We show that in the presence of couples, which introduces complementarities into the students' preferences, acyclicity is still necessary, but not sufficient (Theorem 4.1). A second necessary condition (Theorem 4.2) is ``priority-togetherness'' of couples. A priority structure that satisfies both necessary conditions is called pt-acyclic. For student placement problems where all quotas are equal to one we characterize pt-acyclicity (Lemma 5.1) and show that it is a sufficient condition for the existence of a fair and efficient placement mechanism (Theorem 5.1). If in addition to pt-acyclicity we require ``reallocation-'' and ``vacancy-fairness'' for couples, the so-called dictator-bidictator placement mechanism is the unique fair and efficient placement mechanism (Theorem 5.2). Finally, for general student placement problems, we show that pt-acyclicity may not be sufficient for the existence of a fair and efficient placement mechanism (Examples 5.4, 5.5, and 5.6). We identify a sufficient condition such that the so-called sequential placement mechanism produces a fair and efficient allocation (Theorem 5.3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the many-to-one matching model in which firms have substitutable and quota q-separable preferences over subsets of workers we show that the workers-optimal stable mechanism is group strategy-proof for the workers. In order to prove this result, we also show that under this domain of preferences (which contains the domain of responsive preferences of the college admissions problem) the workers-optimal stable matching is weakly Pareto optimal for the workers and the Blocking Lemma holds as well. We exhibit an example showing that none of these three results remain true if the preferences of firms are substitutable but not quota q-separable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the proof of a classical localization theorem of Bousfield and Friedlander and we remove the assumption that the underlying model category be right proper. The key to the argument is a lemma about factoring in morphisms in the arrow category of a model category.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we introduce and analyze a linear size-structured population model with infinite states-at-birth. We model the dynamics of a population in which individuals have two distinct life-stages: an “active” phase when individuals grow, reproduce and die and a second “resting” phase when individuals only grow. Transition between these two phases depends on individuals’ size. First we show that the problem is governed by a positive quasicontractive semigroup on the biologically relevant state space. Then we investigate, in the framework of the spectral theory of linear operators, the asymptotic behavior of solutions of the model. We prove that the associated semigroup has, under biologically plausible assumptions, the property of asynchronous exponential growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont Wolbachia. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper, we study the geometric discrepancy with respect to families of rotated rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrepancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets with small Minkowski dimension. In each of these cases, extensions of a lemma due to Davenport allow us to construct appropriate rotations of the integer lattice which yield small discrepancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the singular Bott-Chern classes introduced by Bismut, Gillet and Soulé. Singular Bott-Chern classes are the main ingredient to define direct images for closed immersions in arithmetic K-theory. In this paper we give an axiomatic definition of a theory of singular Bott-Chern classes, study their properties, and classify all possible theories of this kind. We identify the theory defined by Bismut, Gillet and Soulé as the only one that satisfies the additional condition of being homogeneous. We include a proof of the arithmetic Grothendieck-Riemann-Roch theorem for closed immersions that generalizes a result of Bismut, Gillet and Soulé and was already proved by Zha. This result can be combined with the arithmetic Grothendieck-Riemann-Roch theorem for submersions to extend this theorem to arbitrary projective morphisms. As a byproduct of this study we obtain two results of independent interest. First, we prove a Poincaré lemma for the complex of currents with fixed wave front set, and second we prove that certain direct images of Bott-Chern classes are closed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We characterize double adjunctions in terms of presheaves and universal squares, and then apply these characterizations to free monads and Eilenberg-Moore objects in double categories. We improve upon an earlier result of Fiore-Gambino-Kock in [7] to conclude: if a double category with cofolding admits the construction of free monads in its horizontal 2-category, then it also admits the construction of free monads as a double category horizontally and vertically, and also in its vertical 2-category. We also prove that a double category admits Eilenberg-Moore objects if and only if a certain parameterized presheaf is representable. Along the way, we develop parameterized presheaves on double categories and prove a double Yoneda Lemma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[superscript] / T d[superscript] and the weighted tail-type integrals of its Fourier transform/series. Sharpness of obtained results in particular is given by the equivalence results for functions satisfying certain regular conditions. Applications include a quantitative form of the Riemann-Lebesgue lemma as well as several other questions in approximation theory and the theory of function spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First: A continuous-time version of Kyle's model (Kyle 1985), known as the Back's model (Back 1992), of asset pricing with asymmetric information, is studied. A larger class of price processes and of noise traders' processes are studied. The price process, as in Kyle's model, is allowed to depend on the path of the market order. The process of the noise traders' is an inhomogeneous Lévy process. Solutions are found by the Hamilton-Jacobi-Bellman equations. With the insider being risk-neutral, the price pressure is constant, and there is no equilibirium in the presence of jumps. If the insider is risk-averse, there is no equilibirium in the presence of either jumps or drifts. Also, it is analised when the release time is unknown. A general relation is established between the problem of finding an equilibrium and of enlargement of filtrations. Random announcement time is random is also considered. In such a case the market is not fully efficient and there exists equilibrium if the sensitivity of prices with respect to the global demand is time decreasing according with the distribution of the random time. Second: Power variations. it is considered, the asymptotic behavior of the power variation of processes of the form _integral_0^t u(s-)dS(s), where S_ is an alpha-stable process with index of stability 0&alpha&2 and the integral is an Itô integral. Stable convergence of corresponding fluctuations is established. These results provide statistical tools to infer the process u from discrete observations. Third: A bond market is studied where short rates r(t) evolve as an integral of g(t-s)sigma(s) with respect to W(ds), where g and sigma are deterministic and W is the stochastic Wiener measure. Processes of this type are particular cases of ambit processes. These processes are in general not of the semimartingale kind.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyse in a unified way how the presence of a trader with privilege information makes the market to be efficient when the release time is known. We establish a general relation between the problem of finding an equilibrium and the problem of enlargement of filtrations. We also consider the case where the time of announcement is random. In such a case the market is not fully efficient and there exists equilibrium if the sensitivity of prices with respect to the global demand is time decreasing according with the distribution of the random time.