12 resultados para FINGERPRINTING

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bread is one of the most widely consumed foods. Its impact on human health is currently of special interest for researchers. We aimed to identify biomarkers of bread consumption by applying a nutrimetabolomic approach to a free-living population. An untargeted HPLC q-TOF-MS and multivariate analysis was applied to human urine from 155 subjects stratified by habitual bread consumption in three groups: non-consumers of bread (n = 56), white-bread consumers (n = 48) and whole-grain bread consumers (n = 51). The most differential metabolites (variable importance for projection ≥1.5) included compounds originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol metabolites, and compounds produced by gut microbiota (such as enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-acetylcitrulline were also tentatively identified. In order to combine multiple metabolites in a model to predict bread consumption, a stepwise logistic regression analysis was used. Receiver operating curves were constructed to evaluate the global performance of individual metabolites and their combination. The area under the curve values [AUC (95 % CI)] of combined models ranged from 77.8 % (69.1 86.4 %) to 93.7 % (89.4 98.1 %), whereas the AUC for the metabolites included in the models had weak values when they were evaluated individually: from 58.1 % (46.6 69.7 %) to 78.4 % (69.8 87.1 %). Our study showed that a daily bread intake significantly impacted on the urinary metabolome, despite being examined under uncontrolled free-living conditions. We further concluded that a combination of several biomarkers of exposure is better than a single biomarker for the predictive ability of discriminative analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bread is one of the most widely consumed foods. Its impact on human health is currently of special interest for researchers. We aimed to identify biomarkers of bread consumption by applying a nutrimetabolomic approach to a free-living population. An untargeted HPLC q-TOF-MS and multivariate analysis was applied to human urine from 155 subjects stratified by habitual bread consumption in three groups: non-consumers of bread (n = 56), white-bread consumers (n = 48) and whole-grain bread consumers (n = 51). The most differential metabolites (variable importance for projection ≥1.5) included compounds originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol metabolites, and compounds produced by gut microbiota (such as enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-acetylcitrulline were also tentatively identified. In order to combine multiple metabolites in a model to predict bread consumption, a stepwise logistic regression analysis was used. Receiver operating curves were constructed to evaluate the global performance of individual metabolites and their combination. The area under the curve values [AUC (95 % CI)] of combined models ranged from 77.8 % (69.1 86.4 %) to 93.7 % (89.4 98.1 %), whereas the AUC for the metabolites included in the models had weak values when they were evaluated individually: from 58.1 % (46.6 69.7 %) to 78.4 % (69.8 87.1 %). Our study showed that a daily bread intake significantly impacted on the urinary metabolome, despite being examined under uncontrolled free-living conditions. We further concluded that a combination of several biomarkers of exposure is better than a single biomarker for the predictive ability of discriminative analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emergent molecular measurement methods, such as DNA microarray, qRTPCR, andmany others, offer tremendous promise for the personalized treatment of cancer. Thesetechnologies measure the amount of specific proteins, RNA, DNA or other moleculartargets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumorspecimens are heterogeneous; an individual specimen typically contains unknownamounts of multiple tissues types. Thus, the measured molecular concentrations resultfrom an unknown mixture of tissue types, and must be normalized to account for thecomposition of the mixture.For example, a breast tumor biopsy may contain normal, dysplastic and cancerousepithelial cells, as well as stromal components (fatty and connective tissue) and bloodand lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic andcancerous epithelial cells. The remaining tissue components serve to “contaminate”the signal of interest. The proportion of each of the tissue components changes asa function of patient characteristics (e.g., age), and varies spatially across the tumorregion. Because each of the tissue components produces a different molecular signature,and the amount of each tissue type is specimen dependent, we must estimate the tissuecomposition of the specimen, and adjust the molecular signal for this composition.Using the idea of a chemical mass balance, we consider the total measured concentrationsto be a weighted sum of the individual tissue signatures, where weightsare determined by the relative amounts of the different tissue types. We develop acompositional source apportionment model to estimate the relative amounts of tissuecomponents in a tumor specimen. We then use these estimates to infer the tissuespecificconcentrations of key molecular targets for sub-typing individual tumors. Weanticipate these specific measurements will greatly improve our ability to discriminatebetween different classes of tumors, and allow more precise matching of each patient tothe appropriate treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacteria are highly diverse and drive a bulk of ecosystem processes. Analysis of relationships between diversity and single specific ecosystem processes neglects the possibility that different species perform multiple functions at the same time. The degradation of dissolved organic carbon (DOC) followed by respiration is a key bacterial function that is modulated by the availability of DOC and the capability to produce extracellular enzymes. In freshwater ecosystems, biofilms are metabolic hotspots and major sites of DOC degradation. We manipulated the diversity of biofilm forming communities which were fed with DOC differing in availability. We characterized community composition using molecular fingerprinting (T-RFLP) and measured functioning as oxygen consumption rates, the conversion of DOC in the medium, bacterial abundance and the activities of five specific enzymes. Based on assays of the extracellular enzyme activity, we calculated how the likelihood of sustaining multiple functions was affected by reduced diversity. Carbon source and biofilm age were strong drivers of community functioning, and we demonstrate how the likelihood of sustaining multifunctionality decreases with decreasing diversity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’esfingosina-1-fosfat (S1P) és un lípid bioactiu amb funcions crucials en la biologia cel•lular. Entre aquestes, la seva activitat mitogènica i citoprotectora són les més estudiades. L’S1P és catabolitzada intracel•lularment mitjançant l’esfingosina-1-fosfat liasa (SGPL1) per generar (E)-2-hexadecenal i fosforiletanolamina. L’objectiu d’aquest projecte és explorar si l’(E)-2-hexadecenal és realment un catabòlit innocu o bé si, pel seu caràcter acceptor de Michael, és capaç de reaccionar amb pèptids o proteïnes específics. Aquesta interacció podria traduïr-se en funcions biològiques determinades, algunes de les quals són possiblement atribuïdes a l’esfingosina-1-fosfat com a tal. Per poder explorar el potencials adductes proteïcs amb l’aldehid, s’han emprat, sobre cèl•lules HeLa que sobreexpressen SGPL1, sondes anàlegs a esfingosina i esfinganina (i els seus derivats fosforil•lats) que presenten una funció azida en la posició omega de la cadena esfingoide. Aquestes, mitjançant química click sense coure, s’han fet reaccionar amb una molècula que presenta un dibenzociclooctí unit a biotina DBCObiotina). Després d’aïllar les proteïnes així biotinilades amb una reïna d’estreptavidina, aquestes es van separar per electroforesi. Les bandes proteïques observades es van extreure del gel i es van digerir amb tripsina, per posteriorment analitzar els pèptids per MALDI-TOF, el que permetria l’identificació de proteïnes a partir de “peptide mass fingerprinting”. Lamentablement, a la fi d’aquest contracte, encara no s’ha pogut identificar cap proteïna que s’uneixi a l’aldehid alliberat per la reacció de l’esfingosina-1- fosfat liasa. No obstant, durant aquest temps s’ha millorat el mètode per detectar aquests adductes proteïcs. Per això, si la recerca continua en aquesta línia, properament es podria saber amb certesa si existeixen o no aquestes interaccions covalents entre determinades proteïnes i l’(E)-2-hexadecenal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic food products are highly susceptible to fraud. Currently, administrative controls are conducted to detect fraud, but having an analytical tool able to verify the organic identity of food would be very supportive. The state-of-the-art in food authentication relies on fingerprinting approaches that find characteristic analytical patterns to unequivocally identify authentic products. While wide research on authentication has been conducted for other commodities, the authentication of organic chicken products is still in its infancy. Challenges include finding fingerprints to discriminate organic from conventional products, and recruiting sample sets that cover natural variability. Future research might be oriented towards developing new authentication models for organic feed, eggs and chicken meat, keeping models updated and implementing them into regulations. Meanwhile, these models might be very supportive to the administrative controls directing inspections towards suspicious fraudulent samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pantoea agglomerans strains are among the most promising biocontrol agents for avariety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistichuman pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting.Results: Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion: Taxonomic mischaracterization was identified as a major problem with P.agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified whichmay be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports should be considered in biosafety assessment of beneficial strains in this species

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peer-reviewed