42 resultados para FAST-ATOM-BOMBARDMENT

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To measure the contribution of individual transactions inside the total risk of a credit portfolio is a major issue in financial institutions. VaR Contributions (VaRC) and Expected Shortfall Contributions (ESC) have become two popular ways of quantifying the risks. However, the usual Monte Carlo (MC) approach is known to be a very time consuming method for computing these risk contributions. In this paper we consider the Wavelet Approximation (WA) method for Value at Risk (VaR) computation presented in [Mas10] in order to calculate the Expected Shortfall (ES) and the risk contributions under the Vasicek one-factor model framework. We decompose the VaR and the ES as a sum of sensitivities representing the marginal impact on the total portfolio risk. Moreover, we present technical improvements in the Wavelet Approximation (WA) that considerably reduce the computational effort in the approximation while, at the same time, the accuracy increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquest projecte centre el seu estudi en els llenguatges de sindicació RSS i Atom, les bases de dades XML natives i el llenguatge de consulta XQUERY.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquesta memòria desenvolupem els conceptes associats al RSS i Atom: què és la web semàntica i la sindicació web, quines són les particularitats del XML i del seu llenguatge de consulta, el XQuery, les característiques dels formats RSS i Atom, i les bases de dades XML natives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most effective techniques offering QoS routing is minimum interference routing. However, it is complex in terms of computation time and is not oriented toward improving the network protection level. In order to include better levels of protection, new minimum interference routing algorithms are necessary. Minimizing the failure recovery time is also a complex process involving different failure recovery phases. Some of these phases depend completely on correct routing selection, such as minimizing the failure notification time. The level of protection also involves other aspects, such as the amount of resources used. In this case shared backup techniques should be considered. Therefore, minimum interference techniques should also be modified in order to include sharing resources for protection in their objectives. These aspects are reviewed and analyzed in this article, and a new proposal combining minimum interference with fast protection using shared segment backups is introduced. Results show that our proposed method improves both minimization of the request rejection ratio and the percentage of bandwidth allocated to backup paths in networks with low and medium protection requirements

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors focus on one of the methods for connection acceptance control (CAC) in an ATM network: the convolution approach. With the aim of reducing the cost in terms of calculation and storage requirements, they propose the use of the multinomial distribution function. This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements. This in turn makes possible a simple deconvolution process. Moreover, under certain conditions additional improvements may be achieved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different procedures to obtain atom condensed Fukui functions are described. It is shown how the resulting values may differ depending on the exact approach to atom condensed Fukui functions. The condensed Fukui function can be computed using either the fragment of molecular response approach or the response of molecular fragment approach. The two approaches are nonequivalent; only the latter approach corresponds in general with a population difference expression. The Mulliken approach does not depend on the approach taken but has some computational drawbacks. The different resulting expressions are tested for a wide set of molecules. In practice one must make seemingly arbitrary choices about how to compute condensed Fukui functions, which suggests questioning the role of these indicators in conceptual density-functional theory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selected configuration interaction (SCI) for atomic and molecular electronic structure calculations is reformulated in a general framework encompassing all CI methods. The linked cluster expansion is used as an intermediate device to approximate CI coefficients BK of disconnected configurations (those that can be expressed as products of combinations of singly and doubly excited ones) in terms of CI coefficients of lower-excited configurations where each K is a linear combination of configuration-state-functions (CSFs) over all degenerate elements of K. Disconnected configurations up to sextuply excited ones are selected by Brown's energy formula, ΔEK=(E-HKK)BK2/(1-BK2), with BK determined from coefficients of singly and doubly excited configurations. The truncation energy error from disconnected configurations, Δdis, is approximated by the sum of ΔEKS of all discarded Ks. The remaining (connected) configurations are selected by thresholds based on natural orbital concepts. Given a model CI space M, a usual upper bound ES is computed by CI in a selected space S, and EM=E S+ΔEdis+δE, where δE is a residual error which can be calculated by well-defined sensitivity analyses. An SCI calculation on Ne ground state featuring 1077 orbitals is presented. Convergence to within near spectroscopic accuracy (0.5 cm-1) is achieved in a model space M of 1.4× 109 CSFs (1.1 × 1012 determinants) containing up to quadruply excited CSFs. Accurate energy contributions of quintuples and sextuples in a model space of 6.5 × 1012 CSFs are obtained. The impact of SCI on various orbital methods is discussed. Since ΔEdis can readily be calculated for very large basis sets without the need of a CI calculation, it can be used to estimate the orbital basis incompleteness error. A method for precise and efficient evaluation of ES is taken up in a companion paper

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work provides a generalization of Mayer's energy decomposition for the density-functional theory (DFT) case. It is shown that one- and two-atom Hartree-Fock energy components in Mayer's approach can be represented as an action of a one-atom potential VA on a one-atom density ρ A or ρ B. To treat the exchange-correlation term in the DFT energy expression in a similar way, the exchange-correlation energy density per electron is expanded into a linear combination of basis functions. Calculations carried out for a number of density functionals demonstrate that the DFT and Hartree-Fock two-atom energies agree to a reasonable extent with each other. The two-atom energies for strong covalent bonds are within the range of typical bond dissociation energies and are therefore a convenient computational tool for assessment of individual bond strength in polyatomic molecules. For nonspecific nonbonding interactions, the two-atom energies are low. They can be either repulsive or slightly attractive, but the DFT results more frequently yield small attractive values compared to the Hartree-Fock case. The hydrogen bond in the water dimer is calculated to be between the strong covalent and nonbonding interactions on the energy scale

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Computational Biophysics Group at the Universitat Pompeu Fabra (GRIB-UPF) hosts two unique computational resources dedicated to the execution of large scale molecular dynamics (MD) simulations: (a) the ACMD molecular-dynamics software, used on standard personal computers with graphical processing units (GPUs); and (b) the GPUGRID. net computing network, supported by users distributed worldwide that volunteer GPUs for biomedical research. We leveraged these resources and developed studies, protocols and open-source software to elucidate energetics and pathways of a number of biomolecular systems, with a special focus on flexible proteins with many degrees of freedom. First, we characterized ion permeation through the bactericidal model protein Gramicidin A conducting one of the largest studies to date with the steered MD biasing methodology. Next, we addressed an open problem in structural biology, the determination of drug-protein association kinetics; we reconstructed the binding free energy, association, and dissaciociation rates of a drug like model system through a spatial decomposition and a Makov-chain analysis. The work was published in the Proceedings of the National Academy of Sciences and become one of the few landmark papers elucidating a ligand-binding pathway. Furthermore, we investigated the unstructured Kinase Inducible Domain (KID), a 28-peptide central to signalling and transcriptional response; the kinetics of this challenging system was modelled with a Markovian approach in collaboration with Frank Noe’s group at the Freie University of Berlin. The impact of the funding includes three peer-reviewed publication on high-impact journals; three more papers under review; four MD analysis components, released as open-source software; MD protocols; didactic material, and code for the hosting group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated K+ channels of the Kv3 subfamily have unusual electrophysiological properties, including activation at very depolarized voltages (positive to −10 mV) and very fast deactivation rates, suggesting special roles in neuronal excitability. In the brain, Kv3 channels are prominently expressed in select neuronal populations, which include fast-spiking (FS) GABAergic interneurons of the neocortex, hippocampus, and caudate, as well as other high-frequency firing neurons. Although evidence points to a key role in high-frequency firing, a definitive understanding of the function of these channels has been hampered by a lack of selective pharmacological tools. We therefore generated mouse lines in which one of the Kv3 genes, Kv3.2, was disrupted by gene-targeting methods. Whole-cell electrophysiological recording showed that the ability to fire spikes at high frequencies was impaired in immunocytochemically identified FS interneurons of deep cortical layers (5-6) in which Kv3.2 proteins are normally prominent. No such impairment was found for FS neurons of superficial layers (2-4) in which Kv3.2 proteins are normally only weakly expressed. These data directly support the hypothesis that Kv3 channels are necessary for high-frequency firing. Moreover, we found that Kv3.2 −/− mice showed specific alterations in their cortical EEG patterns and an increased susceptibility to epileptic seizures consistent with an impairment of cortical inhibitory mechanisms. This implies that, rather than producing hyperexcitability of the inhibitory interneurons, Kv3.2 channel elimination suppresses their activity. These data suggest that normal cortical operations depend on the ability of inhibitory interneurons to generate high-frequency firing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We focus on full-rate, fast-decodable space–time block codes (STBCs) for 2 x 2 and 4 x 2 multiple-input multiple-output (MIMO) transmission. We first derive conditions and design criteria for reduced-complexity maximum-likelihood (ML) decodable 2 x 2 STBCs, and we apply them to two families of codes that were recently discovered. Next, we derive a novel reduced-complexity 4 x 2 STBC, and show that it outperforms all previously known codes with certain constellations.