8 resultados para Extracellular protease
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Estudi realitzat a partir d’una estada a la Universidad de Zaragoza, Espanya, entre novembre del 2007 i abril del 2008. Mycobacterium vaccae és un micobacteri ambiental de creixement ràpid molt estudiat pel seu interès com a possible ús immunoterapéutic en el tractament de la tuberculosis i altres malalties. M.vaccae a l’igual que altres micobacteris presenta dues morfologies colonials: llisa i rugosa. M.vaccae ATCC15483T té originàriament una morfologia llisa. Quant aquest es cultiva en medi sòlid a 30ºC apareixen espontàniament variants rugoses estables que no reverteixen a llises. El motiu pel qual aquest procés té lloc no es coneix, encara que s’ha descrit en Mycobacterium smegmatis i en Mycobacterium avium que els lípids de la paret cel•lular es troben involucrats en aquest canvi de morfologia colonial. L’anàlisi dels contingut en lípids i glicolípids de la paret cel•lular de les dos variants morfològiques de M.vaccae, ens ha indicat que les soques llises presenten un compost extracel•lular que no es troba en les rugoses i que mitjançant l’anàlisi estructural d’aquest compost ha sigut identificat com un polièster extracel•lular de cadena llarga. El present estudi s’ha centrat en determinar els gens implicats en la síntesis d’aquest compost. Per a realitzar aquest anàlisi genètic s’ha construit una llibreria de mutants per transposició de la soca llisa de M. vaccae mitjançant un plàsmid ts/sac i un transposó. S’han obtingut colònies de morfologia rugosa on el plàsmid s’ha insertat en la zona del genoma que codifica per aquest compost extracel•lular. Aquests nous mutants s’han analitzat mitjançant tècniques moleculars (PCR, Southern y seqüenciació). A mès, s’ha construit una llibreria genòmica amb DNA de la soca llisa en plàsmids replicatius de micobacteris derivats de pAL5000 i s’ha transformat la soca rugosa seleccionant per a un fenotip llis estudiant els gens que complementen.
Resumo:
A central feature of drugs of abuse is to induce gene expression in discrete brain structures that are critically involved in behavioral responses related to addictive processes. Although extracellular signal-regulated kinase (ERK) has been implicated in several neurobiological processes, including neuronal plasticity, its role in drug addiction remains poorly understood. This study was designed to analyze the activation of ERK by cocaine, its involvement in cocaine-induced early and long-term behavioral effects, as well as in gene expression. We show, by immunocytochemistry, that acute cocaine administration activates ERK throughout the striatum, rapidly but transiently. This activation was blocked when SCH 23390 [a specific dopamine (DA)-D1 antagonist] but not raclopride (a DA-D2 antagonist) was injected before cocaine. Glutamate receptors of NMDA subtypes also participated in ERK activation, as shown after injection of the NMDA receptor antagonist MK 801. The systemic injection of SL327, a selective inhibitor of the ERK kinase MEK, before cocaine, abolished the cocaine-induced ERK activation and decreased cocaine-induced hyperlocomotion, indicating a role of this pathway in events underlying early behavioral responses. Moreover, the rewarding effects of cocaine were abolished by SL327 in the place-conditioning paradigm. Because SL327 antagonized cocaine-induced c-fos expression and Elk-1 hyperphosphorylation, we suggest that the ERK intracellular signaling cascade is also involved in the prime burst of gene expression underlying long-term behavioral changes induced by cocaine. Altogether, these results reveal a new mechanism to explain behavioral responses of cocaine related to its addictive properties.
Resumo:
Introduction: The coexistence of different molecular types of classical protease-resistant prion protein in the same individual have been described, however, the simultaneous finding of these with the recently described protease-sensitive variant or variably protease-sensitive prionopathy has, to the best of our knowledge, not yet been reported. Case presentation: A 74-year-old Caucasian woman showed a sporadic Creutzfeldt-Jakob disease clinical phenotype with reactive depression, followed by cognitive impairment, akinetic-rigid Parkinsonism with pseudobulbar syndrome and gait impairment with motor apraxia, visuospatial disorientation, and evident frontal dysfunction features such as grasping, palmomental reflex and brisk perioral reflexes. She died at age 77. Neuropathological findings showed: spongiform change in the patient"s cerebral cortex, striatum, thalamus and molecular layer of the cerebellum with proteinase K-sensitive synaptic-like, dot-like or target-like prion protein deposition in the cortex, thalamus and striatum; proteinase K-resistant prion protein in the same regions; and elongated plaque-like proteinase K-resistant prion protein in the molecular layer of the cerebellum. Molecular analysis of prion protein after proteinase K digestion revealed decreased signal intensity in immunoblot, a ladder-like protein pattern, and a 71% reduction of PrPSc signal relative to non-digested material. Her cerebellum showed a 2A prion protein type largely resistant to proteinase K. Genotype of polymorphism at codon 129 was valine homozygous. Conclusion: Molecular typing of prion protein along with clinical and neuropathological data revealed, to the best of our knowledge, the first case of the coexistence of different protease-sensitive prion proteins in the same patient in a rare case that did not fulfill the current clinical diagnostic criteria for either probable or possible sporadic Creutzfeldt-Jakob disease. This highlights the importance of molecular analyses of several brain regions in order to correctly diagnose rare and atypical prionopathies
Resumo:
There are few clinical data on the combination abacavir/lamivudine plus raltegravir. We compared the outcomes of patients from the SPIRAL trial receiving either abacavir/lamivudine or tenofovir/emtricitabine at baseline who had taken at least one dose of either raltegravir or ritonavir-boosted protease inhibitors. For the purpose of this analysis, treatment failure was defined as virological failure (confirmed HIV-1 RNA ≥50 copies/ml) or discontinuation of abacavir/lamivudine or tenofovir/emtricitabine because of adverse events, consent withdrawal, or lost to follow-up. There were 143 (72.59%) patients with tenofovir/emtricitabine and 54 (27.41%) with abacavir/lamivudine. In the raltegravir group, there were three (11.11%) treatment failures with abacavir/lamivudine and eight (10.96%) with tenofovir/emtricitabine (estimated difference 0.15%; 95% CI -17.90 to 11.6). In the ritonavir-boosted protease inhibitor group, there were four (14.81%) treatment failures with abacavir/lamivudine and 12 (17.14%) with tenofovir/emtricitabine (estimated difference -2.33%; 95% CI -16.10 to 16.70). Triglycerides decreased and HDL cholesterol increased through the study more pronouncedly with abacavir/lamivudine than with tenofovir/emtricitabine and differences in the total-to-HDL cholesterol ratio between both combinations of nucleoside reverse transcriptase inhibitors (NRTIs) tended to be higher in the raltegravir group, although differences at 48 weeks were not significant. While no patient discontinued abacavir/lamivudine due to adverse events, four (2.80%) patients (all in the ritonavir-boosted protease inhibitor group) discontinued tenofovir/emtricitabine because of adverse events (p=0.2744). The results of this analysis do not suggest that outcomes of abacavir/lamivudine are worse than those of tenofovir/emtricitabine when combined with raltegravir in virologically suppressed HIV-infected adults.
Resumo:
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
Resumo:
Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradativeenzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria
Resumo:
The amyloid precursor protein (APP) is mainly known for being the precursor of the ß-amyloid peptide, which accumulates in plaques found in the brain of Alzheimer's disease patients. Expression in different tissues and the degree of sequence identity among mammals indicate an essential and non-tissue specific physiological function. APP is anchored to the membrane and displays a single C-terminal intracellular domain and a longer N-terminal extracellular domain. The basic biochemical properties and the scattered data on research, not related to production of beta-amyloid peptide, suggest that the protein and the molecules resulting from APP proteolytic cleavage may act as adhesion factors, enzymes, hormones/neurotransmitters and/or protease inhibitors. APP deserves to be known for its quite notable properties and its physiological role(s).