22 resultados para Evolutionary History

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoreception is a biological process essential for the survival of animals, as it allows the recognition of important volatile cues for the detection of food, egg-laying substrates, mates or predators, among other purposes. Furthermore, its role in pheromone detection may contribute to evolutionary processes such as reproductive isolation and speciation. This key role in several vital biological processes makes chemoreception a particularly interesting system for studying the role of natural selection in molecular adaptation. Two major gene families are involved in the perireceptor events of the chemosensory system: the odorant-binding protein (OBP) and chemosensory protein (CSP) families. Here, we have conducted an exhaustive comparative genomic analysis of these gene families in twenty Arthropoda species. We show that the evolution of the OBP and CSP gene families is highly dynamic, with a high number of gains and losses of genes, pseudogenes and independent origins of subfamilies. Taken together, our data clearly support the birth-and-death model for the evolution of these gene families with an overall high gene-turnover rate. Moreover, we show that the genome organization of the two families is significantly more clustered than expected by chance and, more important, that this pattern appears to be actively maintained across the Drosophila phylogeny. Finally, we suggest the homologous nature of the OBP and CSP gene families, dating back their MRCA (most recent common ancestor) to 380¿420 Mya, and we propose a scenario for the origin and diversification of these families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Global analyses of human disease genes by computational methods have yielded important advances in the understanding of human diseases. Generally these studies have treated the group of disease genes uniformly, thus ignoring the type of disease-causing mutations (dominant or recessive). In this report we present a comprehensive study of the evolutionary history of autosomal disease genes separated by mode of inheritance.Results: We examine differences in protein and coding sequence conservation between dominant and recessive human disease genes. Our analysis shows that disease genes affected by dominant mutations are more conserved than those affected by recessive mutations. This could be a consequence of the fact that recessive mutations remain hidden from selection while heterozygous. Furthermore, we employ functional annotation analysis and investigations into disease severity to support this hypothesis. Conclusion: This study elucidates important differences between dominantly- and recessively-acting disease genes in terms of protein and DNA sequence conservation, paralogy and essentiality. We propose that the division of disease genes by mode of inheritance will enhance both understanding of the disease process and prediction of candidate disease genes in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present experimental and theoretical analyses of data requirements for haplotype inference algorithms. Our experiments include a broad range of problem sizes under two standard models of tree distribution and were designed to yield statistically robust results despite the size of the sample space. Our results validate Gusfield's conjecture that a population size of n log n is required to give (with high probability) sufficient information to deduce the n haplotypes and their complete evolutionary history. The experimental results inspired our experimental finding with theoretical bounds on the population size. We also analyze the population size required to deduce some fixed fraction of the evolutionary history of a set of n haplotypes and establish linear bounds on the required sample size. These linear bounds are also shown theoretically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asteraceae or Compositae constitute one of the largest families of the angiosperms, distributed over all continents but in Antarctica, particularly well represented in temperate zones and less frequent in tropical regions. The Asteraceae have been the object of a great deal of attention from all viewpoints for their scientific as well as economic interest. Telomeres sequences are highly conservated at the ends of chromosomes across the eukaryotes. In plants, generally are formed by tandemly repeated sequences named Arabidopsis type but several exceptions have been described. The objective of the present work is to study the telomeric characterization along the whole Asteraceae family and to find, if any, the relationships between these results and the evolutionary history in this family.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El present projecte s'ha dut a terme a l'American Museum of Natural History (AMNH, New York) entre el 31 de Desembre de 2010 i el 30 de Desembre de 2012. L'objectiu del projecte era elucidar la història evolutiva de la mà humana: traçar els canvis evolutius en la seva forma i proporcions que van propiciar la seva estructura moderna que permet als humans manipular amb precisió. El treball realitzat ha inclòs recol•lecció de dades i anàlisis, redacció de resultats i formació en mètodes analítics específics. Durant aquest temps, l'autor a completat la seva de base de dades existent en mesures lineals de la mà a hominoides. També s'han agafat dades del peu; d'aquesta forma ara mateix es compta amb una base de dades amb més de 500 individus, amb més de 200 mesures per cada un. També s'han agafat dades en tres imensions utilitzant un làser escàner. S'han après tècniques de morfometria geomètrica 3D directament dels pioners al camp a l'AMNH. Com a resultat d'aquesta feina s'han produït 10 resums (publicats a congressos internacionals) i 9 manuscrits (molts d'ells ja publicats a revistes internacionals) amb resultats de gran rellevància: La mà humana posseeix unes proporcions relativament primitives, que són més similars a les proporciones que tenien els hominoides fòssils del Miocè que no pas a la dels grans antropomorfs actuals. Els darrers tenen unes mans allargades amb un polzes molt curts que reflexen l'ús de la mà com a eina de suspensió sota les branques. En canvi, els hominoides del Miocè tenien unes mans relativament curtes amb un polze llarg que feien servir per estabilitzar el seu pes quan caminaven per sobre de les branques. Una vegada els primers homínids van aparèixer al final del Miocè (fa uns 6 Ma) i van començar a fer servir el bipedisme com a mitjà més comú de locomoció, les seves mans van ser "alliberades" de les seves funcions locomotores. La selecció natural—ara només treballant en la manipulació—va convertir les proporcions ja existents de la mà d'aquests primats en l'òrgan manipulatori que representa la mà humana avui dia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Searching for associations between genetic variants and complex diseases has been a very active area of research for over two decades. More than 51,000 potential associations have been studied and published, a figure that keeps increasing, especially with the recent explosion of array-based Genome-Wide Association Studies. Even if the number of true associations described so far is high, many of the putative risk variants detected so far have failed to be consistently replicated and are widely considered false positives. Here, we focus on the world-wide patterns of replicability of published association studies.Results: We report three main findings. First, contrary to previous results, genes associated to complex diseases present lower degrees of genetic differentiation among human populations than average genome-wide levels. Second, also contrary to previous results, the differences in replicability of disease associated-loci between Europeans and East Asians are highly correlated with genetic differentiation between these populations. Finally, highly replicated genes present increased levels of high-frequency derived alleles in European and Asian populations when compared to African populations. Conclusions: Our findings highlight the heterogeneous nature of the genetic etiology of complex disease, confirm the importance of the recent evolutionary history of our species in current patterns of disease susceptibility and could cast doubts on the status as false positives of some associations that have failed to replicate across populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The RPS4 gene codifies for ribosomal protein S4, a very well-conserved protein present in all kingdoms. In primates, RPS4 is codified by two functional genes located on both sex chromosomes: the RPS4X and RPS4Y genes. In humans, RPS4Y is duplicated and the Y chromosome therefore carries a third functional paralog: RPS4Y2, which presents a testis-specific expression pattern. Results: DNA sequence analysis of the intronic and cDNA regions of RPS4Y genes from species covering the entire primate phylogeny showed that the duplication event leading to the second Y-linked copy occurred after the divergence of New World monkeys, about 35 million years ago. Maximum likelihood analyses of the synonymous and non-synonymous substitutions revealed that positive selection was acting on RPS4Y2 gene in the human lineage, which represents the first evidence of positive selection on a ribosomal protein gene. Putative positive amino acid replacements affected the three domains of the protein: one of these changes is located in the KOW protein domain and affects the unique invariable position of this motif, and might thus have a dramatic effect on the protein function.Conclusion: Here, we shed new light on the evolutionary history of RPS4Y gene family, especially on that of RPS4Y2. The results point that the RPS4Y1 gene might be maintained to compensate gene dosage between sexes, while RPS4Y2 might have acquired a new function, at least in the lineage leading to humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged. Results: A total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses. Conclusions: S. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-complexity regions (LCRs) in proteins are tracts that are highly enriched in one or a few aminoacids. Given their high abundance, and their capacity to expand in relatively short periods of time through replication slippage, they can greatly contribute to increase protein sequence space and generate novel protein functions. However, little is known about the global impact of LCRs on protein evolution. We have traced back the evolutionary history of 2,802 LCRs from a large set of homologous protein families from H.sapiens, M.musculus, G.gallus, D.rerio and C.intestinalis. Transcriptional factors and other regulatory functions are overrepresented in proteins containing LCRs. We have found that the gain of novel LCRs is frequently associated with repeat expansion whereas the loss of LCRs is more often due to accumulation of amino acid substitutions as opposed to deletions. This dichotomy results in net protein sequence gain over time. We have detected a significant increase in the rate of accumulation of novel LCRs in the ancestral Amniota and mammalian branches, and a reduction in the chicken branch. Alanine and/or glycine-rich LCRs are overrepresented in recently emerged LCR sets from all branches, suggesting that their expansion is better tolerated than for other LCR types. LCRs enriched in positively charged amino acids show the contrary pattern, indicating an important effect of purifying selection in their maintenance. We have performed the first large-scale study on the evolutionary dynamics of LCRs in protein families. The study has shown that the composition of an LCR is an important determinant of its evolutionary pattern.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteins are composed of a combination of discrete, well-defined, sequence domains, associated with specific functions that have arisen at different times during evolutionary history. The emergence of novel domains is related to protein functional diversification and adaptation. But currently little is known about how novel domains arise and how they subsequently evolve. To gain insights into the impact of recently emerged domains in protein evolution we have identified all human young protein domains that have emerged in approximately the past 550 million years. We have classified them into vertebrate-specific and mammalian-specific groups, and compared them to older domains. We have found 426 different annotated young domains, totalling 995 domain occurrences, which represent about 12.3% of all human domains. We have observed that 61.3% of them arose in newly formed genes, while the remaining 38.7% are found combined with older domains, and have very likely emerged in the context of a previously existing protein. Young domains are preferentially located at the N-terminus of the protein, indicating that, at least in vertebrates, novel functional sequences often emerge there. Furthermore, young domains show significantly higher non-synonymous to synonymous substitution rates than older domains using human and mouse orthologous sequence comparisons. This is also true when we compare young and old domains located in the same protein, suggesting that recently arisen domains tend to evolve in a less constrained manner than older domains. We conclude that proteins tend to gain domains over time, becoming progressively longer. We show that many proteins are made of domains of different age, and that the fastest evolving parts correspond to the domains that have been acquired more recently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Planarians are a group of free-living platyhelminths (triclads) best-known largely due to long-standing regeneration and pattern formation research. However, the group"s diversity and evolutionary history has been mostly overlooked. A few taxonomists have focused on certain groups, resulting in the description of many species and the establishment of higher-level groups within the Tricladida. However, the scarcity of morphological features precludes inference of phylogenetic relationships among these taxa. The incorporation of molecular markers to study their diversity and phylogenetic relationships has facilitated disentangling many conundrums related to planarians and even allowed their use as phylogeographic model organisms. Here, we present some case examples ranging from delimiting species in an integrative style, and barcoding them, to analysing their evolutionary history on a lower scale to infer processes affecting biodiversity origin, or on a higher scale to understand the genus level or even higher relationships. In many cases, these studies have allowed proposing better classifications and resulted in taxonomical changes. We also explain shortcomings resulting in a lack of resolution or power to apply the most up-to-date data analyses. Next-generation sequencing methodologies may help improve this situation and accelerate their use as model organisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.