74 resultados para Entropy generation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove that if f is a partially hyperbolic diffeomorphism on the compact manifold M with one dimensional center bundle, then the logarithm of the spectral radius of the map induced by f on the real homology groups of M is smaller or equal to the topological entropy of f. This is a particular case of the Shub's entropy conjecture, which claims that the same conclusion should be true for any C1 map on any compact manifold.
Resumo:
Report for the scientific sojourn at the Stanford University from January until June 2007. Music is well known for affecting human emotional states, yet the relationship between specific musical parameters and emotional responses is still not clear. With the advent of new human-computer interaction (HCI) technologies, it is now possible to derive emotion-related information from physiological data and use it as an input to interactive music systems. Providing such implicit musical HCI will be highly relevant for a number of applications including music therapy, diagnosis, nteractive gaming, and physiologically-based musical instruments. A key question in such physiology-based compositions is how sound synthesis parameters can be mapped to emotional states of valence and arousal. We used both verbal and heart rate responses to evaluate the affective power of five musical parameters. Our results show that a significant correlation exists between heart rate and the subjective evaluation of well-defined musical parameters. Brightness and loudness showed to be arousing parameters on subjective scale while harmonicity and even partial attenuation factor resulted in heart rate changes typically associated to valence. This demonstrates that a rational approach to designing emotion-driven music systems for our public installations and music therapy applications is possible.
Resumo:
Given the urgence of a new paradigm in wireless digital trasmission which should allow for higher bit rate, lower latency and tigher delay constaints, it has been proposed to investigate the fundamental building blocks that at the circuital/device level, will boost the change towards a more efficient network architecture, with high capacity, higher bandwidth and a more satisfactory end user experience. At the core of each transciever, there are inherently analog devices capable of providing the carrier signal, the oscillators. It is strongly believed that many limitations in today's communication protocols, could be relieved by permitting high carrier frequency radio transmission, and having some degree of reconfigurability. This led us to studying distributed oscillator architectures which work in the microwave range and possess wideband tuning capability. As microvave oscillators are essentially nonlinear devices, a full nonlinear analyis, synthesis, and optimization had to be considered for their implementation. Consequently, all the most used nonlinear numerical techniques in commercial EDA software had been reviewed. An application of all the aforementioned techniques has been shown, considering a systems of three coupled oscillator ("triple push" oscillator) in which the stability of the various oscillating modes has been studied. Provided that a certain phase distribution is maintained among the oscillating elements, this topology permits a rise in the output power of the third harmonic; nevertheless due to circuit simmetry, "unwanted" oscillating modes coexist with the intenteded one. Starting with the necessary background on distributed amplification and distributed oscillator theory, the design of a four stage reverse mode distributed voltage controlled oscillator (DVCO) using lumped elments has been presented. All the design steps have been reported and for the first time a method for an optimized design with reduced variations in the output power has been presented. Ongoing work is devoted to model a wideband DVCO and to implement a frequency divider.
Resumo:
Paltridge found reasonable values for the most significant climatic variables through maximizing the material transport part of entropy production by using a simple box model. Here, we analyse Paltridge's box model to obtain the energy and the entropy balance equations separately. Derived expressions for global entropy production, which is a function of the radiation field, and even its material transport component, are shown to be different from those used by Paltridge. Plausible climatic states are found at extrema of these parameters. Feasible results are also obtained by minimizing the radiation part of entropy production, in agreement with one of Planck's results, Finally, globally averaged values of the entropy flux of radiation and material entropy production are obtained for two dynamical extreme cases: an earth with uniform temperature, and an earth in radiative equilibrium at each latitudinal point
Resumo:
L’estudi examina les relacions entre (1) les xarxes socials personals de la població immigrant resident a Barcelona i (2) les seves identitats culturals múltiples. L’objectiu principal de l’estudi és entendre com el contingut i l’estructura de les relacions socials dels immigrants facilita o dificulta (1) tenir un sentiment de pertinença a les noves cultures d’acollida, la catalana i la espanyola, i (2) la integració d’aquestes noves identitats socioculturals amb la seva identitat d’origen en una nova identitat bicultural cohesiva. El nostre plantejament inicial era que els immigrants amb xarxes socials més diverses des del punt de vista de la seva composició cultural tindrien més recursos socials i experiències cognitives més diverses , factors que afavoreixen les identificacions múltiples i la participació cívica. Els resultats de l’estudi mostren que el grau d’identificació dels participants amb la seva cultura ètnica o d’origen és força alt i, en certa mesura, més alt en comparació amb les cultures d’acollida ( catalana, cívica i espanyola). Tanmateix, el vincle dels participants amb les cultures d’acollida (p. ex., la cultura catalana) és prou rellevant per a indicar una orientació bicultural (catalana i ètnica). Les anàlisis de correlacions revelen que sentir-se català no impedeix sentir-se part de la comunitat etnocultural d’origen. A més, existeix una interrelació entre l'orientació cultural catalana i la identificació amb les comunitats cíviques locals. De la mateixa manera, tenir competències en llengua catalana no va en detriment de les competències en llengua castellana. Les anàlisis també mostren que factors com l’orientació cultural catalana, l’ús del català i la identificació amb la cultura catalana tenen una correlació positiva amb el grau de chohesio de la indentitat bicultural, afavoreixen el benestar psicològic i disminueixen l’estrès aculturatiu. L’anàlisi de les xarxes socials mostra que la identificació amb la cultura catalana, l’orientació cultural catalana i la integració de la identitat són factors clau per tenir xarxes socials més diverses des del punt de vista ètnic i lingüístic, amb menys membres del col•lectiu d’origen, i amb subgrups o “cliques” culturalment més heterogenis. La identificació espanyola també prediu, en mesura més reduïda, la diversitat de les xarxes. Els nostres resultats contribueixen a la recerca actual i les teories sobre interculturalitat i identitat cultural.
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
The hypothesis of minimum entropy production is applied to a simple one-dimensional energy balance model and is analysed for different values of the radiative forcing due to greenhouse gases. The extremum principle is used to determine the planetary “conductivity” and to avoid the “diffusive” approximation, which is commonly assumed in this type of model. For present conditions the result at minimum radiative entropy production is similar to that obtained by applying the classical model. Other climatic scenarios show visible differences, with better behaviour for the extremal case
Resumo:
Induced pluripotent stem (iPS) cells have generated keen interestdue to their potential use in regenerative medicine. They havebeen obtained from various cell types of both mice and humans byexogenous delivery of different combinations of Oct4, Sox2, Klf4,c-Myc, Nanog, and Lin28. The delivery of these transcription factorshas mostly entailed the use of integrating viral vectors (retrovirusesor lentiviruses), carrying the risk of both insertional mutagenesisand oncogenesis due to misexpression of these exogenousfactors. Therefore, obtaining iPS cells that do not carry integratedtransgene sequences is an important prerequisite for their eventualtherapeutic use. Here we report the generation of iPS cell linesfrom mouse embryonic fibroblasts with no evidence of integrationof the reprogramming vector in their genome, achieved by nucleofectionof a polycistronic construct coexpressing Oct4, Sox2, Klf4,and c-Myc
Resumo:
The generation of patient-specific induced pluripotent stem cells (iPSCPSCPSCs) offers unprecedented opportunities for modeling and treating human disease. In combination with gene therapy, the iPSCPSCPSC technology can be used to generate disease-free progenitor cells of potential interest for autologous cell therapy. We explain a protocol for the reproducible generation of genetically corrected iPSCPSCPSCs starting from the skin biopsies of Fanconi anemia patients using retroviral transduction with OCT4, SOX2 and KLF4. Before reprogramming, the fibroblasts and/or keratinocytes of the patients are genetically corrected with lentiviruses expressing FANCA. The same approach may be used for other diseases susceptible to gene therapy correction. Genetically corrected, characterized lines of patient-specific iPSCPSCPSCs can be obtained in 4–5 months.
Resumo:
Induced pluripotent stem cells (iPSC ) provide an invaluable resource for regenerative medicine as they allow the generationof patient-specific progenitors with potential value for cell therapy. However, in many instances, an off-the-shelf approach isdesirable, such as for cell therapy of acute conditions or when the patient’s somatic cells are altered as a consequence of a chronicdisease or aging. Cord blood (CB) stem cells appear ideally suited for this purpose as they are young cells expected to carryminimal somatic mutations and possess the immunological immaturity of newborn cells; additionally, several hundred thousandimmunotyped CB units are readily available through a worldwide network of CB banks. Here we present a detailed protocol for thederivation of CB stem cells and how they can be reprogrammed to pluripotency by retroviral transduction with only two factors(OCT 4 and SO X2) in 2 weeks and without the need for additional chemical compounds.
Resumo:
Human embryonic stem (hES) cells represent a potential source for cell replacement therapy of many degenerative diseases. Most frequently, hES cell lines are derived from surplus embryos from assisted reproduction cycles, independent of their quality or morphology. Here, we show that hES cell lines can be obtained from poor-quality blastocysts with the same efficiency as that obtained from good- or intermediate-quality blastocysts. Furthermore, we show that the self-renewal, pluripotency, and differentiation ability of hES cell lines derived from either source are comparable. Finally, we present a simple and reproducible embryoid body-based protocol for the differentiation of hES cells into functional cardiomyocytes. The five new hES cell lines derived here should widen the spectrum of available resources for investigating the biology of hES cells and advancing toward efficient strategies of regenerative medicine.