48 resultados para Entropia de Rényi

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alfréd Rényi, in a paper of 1962, A new approach to the theory ofEngel's series, proposed a problem related to the growth of theelements of an Engel's series. In this paper, we reformulate andsolve Rényi's problem for both, Engel's series and Pierceexpansions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that if f is a partially hyperbolic diffeomorphism on the compact manifold M with one dimensional center bundle, then the logarithm of the spectral radius of the map induced by f on the real homology groups of M is smaller or equal to the topological entropy of f. This is a particular case of the Shub's entropy conjecture, which claims that the same conclusion should be true for any C1 map on any compact manifold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimal models for the explanation of decision-making in computational neuroscience are based on the analysis of the evolution for the average firing rates of two interacting neuron populations. While these models typically lead to multi-stable scenario for the basic derived dynamical systems, noise is an important feature of the model taking into account finite-size effects and robustness of the decisions. These stochastic dynamical systems can be analyzed by studying carefully their associated Fokker-Planck partial differential equation. In particular, we discuss the existence, positivity and uniqueness for the solution of the stationary equation, as well as for the time evolving problem. Moreover, we prove convergence of the solution to the the stationary state representing the probability distribution of finding the neuron families in each of the decision states characterized by their average firing rates. Finally, we propose a numerical scheme allowing for simulations performed on the Fokker-Planck equation which are in agreement with those obtained recently by a moment method applied to the stochastic differential system. Our approach leads to a more detailed analytical and numerical study of this decision-making model in computational neuroscience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the existence and qualitative properties of travelling waves associated to a nonlinear flux limited partial differential equation coupled to a Fisher-Kolmogorov-Petrovskii-Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of C2 classical regularity, but also the existence of discontinuous entropy travelling wave solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paltridge found reasonable values for the most significant climatic variables through maximizing the material transport part of entropy production by using a simple box model. Here, we analyse Paltridge's box model to obtain the energy and the entropy balance equations separately. Derived expressions for global entropy production, which is a function of the radiation field, and even its material transport component, are shown to be different from those used by Paltridge. Plausible climatic states are found at extrema of these parameters. Feasible results are also obtained by minimizing the radiation part of entropy production, in agreement with one of Planck's results, Finally, globally averaged values of the entropy flux of radiation and material entropy production are obtained for two dynamical extreme cases: an earth with uniform temperature, and an earth in radiative equilibrium at each latitudinal point

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computational approach to the Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] atom in a molecule is critically investigated, and several difficulties are highlighted. It is shown that these difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure. The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper information entropy, allows the Hirshfeld approach to be used for charged molecules, eliminates arbitrariness in the choice of the promolecule, and increases the magnitudes of the charges. The resulting "Hirshfeld-I charges" correlate well with electrostatic potential derived atomic charges

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothesis of minimum entropy production is applied to a simple one-dimensional energy balance model and is analysed for different values of the radiative forcing due to greenhouse gases. The extremum principle is used to determine the planetary “conductivity” and to avoid the “diffusive” approximation, which is commonly assumed in this type of model. For present conditions the result at minimum radiative entropy production is similar to that obtained by applying the classical model. Other climatic scenarios show visible differences, with better behaviour for the extremal case

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a non-equilibrium theory in a system with heat and radiative fluxes. The obtained expression for the entropy production is applied to a simple one-dimensional climate model based on the first law of thermodynamics. In the model, the dissipative fluxes are assumed to be independent variables, following the criteria of the Extended Irreversible Thermodynamics (BIT) that enlarges, in reference to the classical expression, the applicability of a macroscopic thermodynamic theory for systems far from equilibrium. We analyze the second differential of the classical and the generalized entropy as a criteria of stability of the steady states. Finally, the extreme state is obtained using variational techniques and observing that the system is close to the maximum dissipation rate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The second differential of the entropy is used for analysing the stability of a thermodynamic climatic model. A delay time for the heat flux is introduced whereby it becomes an independent variable. Two different expressions for the second differential of the entropy are used: one follows classical irreversible thermodynamics theory; the second is related to the introduction of response time and is due to the extended irreversible thermodynamics theory. the second differential of the classical entropy leads to unstable solutions for high values of delay times. the extended expression always implies stable states for an ice-free earth. When the ice-albedo feedback is included, a discontinuous distribution of stable states is found for high response times. Following the thermodynamic analysis of the model, the maximum rates of entropy production at the steady state are obtained. A latitudinally isothermal earth produces the extremum in global entropy production. the material contribution to entropy production (by which we mean the production of entropy by material transport of heat) is a maximum when the latitudinal distribution of temperatures becomes less homogeneous than present values