30 resultados para Electroencephalogram (EEG)

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present a quantitative comparisons of different independent component analysis (ICA) algorithms in order to investigate their potential use in preprocessing (such as noise reduction and feature extraction) the electroencephalogram (EEG) data for early detection of Alzhemier disease (AD) or discrimination between AD (or mild cognitive impairment, MCI) and age-match control subjects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tècnica de l’electroencefalograma (EEG) és una de les tècniques més utilitzades per estudiar el cervell. En aquesta tècnica s’enregistren els senyals elèctrics que es produeixen en el còrtex humà a través d’elèctrodes col•locats al cap. Aquesta tècnica, però, presenta algunes limitacions a l’hora de realitzar els enregistraments, la principal limitació es coneix com a artefactes, que són senyals indesitjats que es mesclen amb els senyals EEG. L’objectiu d’aquest treball de final de màster és presentar tres nous mètodes de neteja d’artefactes que poden ser aplicats en EEG. Aquests estan basats en l’aplicació de la Multivariate Empirical Mode Decomposition, que és una nova tècnica utilitzada per al processament de senyal. Els mètodes de neteja proposats s’apliquen a dades EEG simulades que contenen artefactes (pestanyeigs), i un cop s’han aplicat els procediments de neteja es comparen amb dades EEG que no tenen pestanyeigs, per comprovar quina millora presenten. Posteriorment, dos dels tres mètodes de neteja proposats s’apliquen sobre dades EEG reals. Les conclusions que s’han extret del treball són que dos dels nous procediments de neteja proposats es poden utilitzar per realitzar el preprocessament de dades reals per eliminar pestanyeigs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Differences in dimensionality of electroencephalogram during awake and deeper sleep stages. The nonlinear dynamical systems theory provides some tools for the analysis of electroencephalogram (EEG) at different sleep stages. Its use could allow the automatic monitoring of the states of the sleep and it would also contribute an explanatory level of the differences between stages. The goal of the present paper is to address this type of analysis, focusing on the most different stages. Estimations of dimensionality were compared when six subjects were awake and in a deep sleep stage. Greater dimensionality involves more complexity because the system receives more external influences. If this dimensionality is maximum, we can consider that the time series is a noisy one. A smaller dimensionality involves lower complexity because the system receives fewer inputs. We hypothesized that we would find greater dimensionality when subjects were awake than in a deep sleep stage. Results show a noisy time series during the awake stage, whereas in the sleep stage, dimensionality is smaller, confirming our hypothesis. This result is similar to the findings reached previously by other authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tècnica de l’electroencefalograma (EEG) és una de les tècniques més utilitzades per estudiar el cervell. En aquesta tècnica s’enregistren els senyals elèctrics que es produeixen en el còrtex humà a través d’elèctrodes col•locats al cap. Aquesta tècnica, però, presenta algunes limitacions a l’hora de realitzar els enregistraments, la principal limitació es coneix com a artefactes, que són senyals indesitjats que es mesclen amb els senyals EEG. L’objectiu d’aquest treball de final de màster és presentar tres nous mètodes de neteja d’artefactes que poden ser aplicats en EEG. Aquests estan basats en l’aplicació de la Multivariate Empirical Mode Decomposition, que és una nova tècnica utilitzada per al processament de senyal. Els mètodes de neteja proposats s’apliquen a dades EEG simulades que contenen artefactes (pestanyeigs), i un cop s’han aplicat els procediments de neteja es comparen amb dades EEG que no tenen pestanyeigs, per comprovar quina millora presenten. Posteriorment, dos dels tres mètodes de neteja proposats s’apliquen sobre dades EEG reals. Les conclusions que s’han extret del treball són que dos dels nous procediments de neteja proposats es poden utilitzar per realitzar el preprocessament de dades reals per eliminar pestanyeigs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se desconoce si existe un tiempo de evolución límite a partir del cual ingresar en una UMVEEG* no suponga una mejoría del pronóstico del paciente epiléptico. El estudio analiza el efecto del ingreso en la UMVEEG sobre una serie de variables pronósticas (FC**, NFAE***, CVP****) en función del tiempo de evolución desde el diagnóstico. Analizamos epilépticos diagnosticados con certeza y pacientes con crisis psicógenas. Se estudiaron 135 pacientes(Edad:39+13,5años,Sexo(55,6%mujeres).Se obtuvo una mejoría significativa de FC**(p<0,001)y CVP****(p<0,005)en los grupos estudiados independientemente del tiempo de evolución.El tiempo de evolución determinó una respuesta diferencial sobre la reducción del NFAE***excepto para crisis psicógenas,en que hubo una reducción significativa(p=0,004)independientemente del tiempo de evolución.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time–frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts—with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata are then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443–9).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several clinical studies have reported that EEG synchrony is affected by Alzheimer’s disease (AD). In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD using EEG signals. In this paper, multiple synchrony measures are assessed through statistical tests (Mann–Whitney U test), including correlation, phase synchrony and Granger causality measures. Moreover, linear discriminant analysis (LDA) is conducted with those synchrony measures as features. For the data set at hand, the frequency range (5-6Hz) yields the best accuracy for diagnosing AD, which lies within the classical theta band (4-8Hz). The corresponding classification error is 4.88% for directed transfer function (DTF) Granger causality measure. Interestingly, results show that EEG of AD patients is more synchronous than in healthy subjects within the optimized range 5-6Hz, which is in sharp contrast with the loss of synchrony in AD EEG reported in many earlier studies. This new finding may provide new insights about the neurophysiology of AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroencephalographic (EEG) recordings are, most of the times, corrupted by spurious artifacts, which should be rejected or cleaned by the practitioner. As human scalp EEG screening is error-prone, automatic artifact detection is an issue of capital importance, to ensure objective and reliable results. In this paper we propose a new approach for discrimination of muscular activity in the human scalp quantitative EEG (QEEG), based on the time-frequency shape analysis. The impact of the muscular activity on the EEG can be evaluated from this methodology. We present an application of this scoring as a preprocessing step for EEG signal analysis, in order to evaluate the amount of muscular activity for two set of EEG recordings for dementia patients with early stage of Alzheimer’s disease and control age-matched subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Does Independent Component Analysis (ICA) denature EEG signals? We applied ICA to two groups of subjects (mild Alzheimer patients and control subjects). The aim of this study was to examine whether or not the ICA method can reduce both group di®erences and within-subject variability. We found that ICA diminished Leave-One- Out root mean square error (RMSE) of validation (from 0.32 to 0.28), indicative of the reduction of group di®erence. More interestingly, ICA reduced the inter-subject variability within each group (¾ = 2:54 in the ± range before ICA, ¾ = 1:56 after, Bartlett p = 0.046 after Bonfer- roni correction). Additionally, we present a method to limit the impact of human error (' 13:8%, with 75.6% inter-cleaner agreement) during ICA cleaning, and reduce human bias. These ¯ndings suggests the novel usefulness of ICA in clinical EEG in Alzheimer's disease for reduction of subject variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop systems in order to detect Alzheimer’s disease we want to use EEG signals. Available database is raw, so the first step must be to clean signals properly. We propose a new way of ICA cleaning on a database recorded from patients with Alzheimer's disease (mildAD, early stage). Two researchers visually inspected all the signals (EEG channels), and each recording's least corrupted (artefact-clean) continuous 20 sec interval were chosen for the analysis. Each trial was then decomposed using ICA. Sources were ordered using a kurtosis measure, and the researchers cleared up to seven sources per trial corresponding to artefacts (eye movements, EMG corruption, EKG, etc), using three criteria: (i) Isolated source on the scalp (only a few electrodes contribute to the source), (ii) Abnormal wave shape (drifts, eye blinks, sharp waves, etc.), (iii) Source of abnormally high amplitude ( �100 �V). We then evaluated the outcome of this cleaning by means of the classification of patients using multilayer perceptron neural networks. Results are very satisfactory and performance is increased from 50.9% to 73.1% correctly classified data using ICA cleaning procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recent advances, early diagnosis of Alzheimer’s disease (AD) from electroencephalography (EEG) remains a difficult task. In this paper, we offer an added measure through which such early diagnoses can potentially be improved. One feature that has been used for discriminative classification is changes in EEG synchrony. So far, only the decrease of synchrony in the higher frequencies has been deeply analyzed. In this paper, we investigate the increase of synchrony found in narrow frequency ranges within the θ band. This particular increase of synchrony is used with the well-known decrease of synchrony in the band to enhance detectable differences between AD patients and healthy subjects. We propose a new synchrony ratio that maximizes the differences between two populations. The ratio is tested using two different data sets, one of them containing mild cognitive impairment patients and healthy subjects, and another one, containing mild AD patients and healthy subjects. The results presented in this paper show that classification rate is improved, and the statistical difference between AD patients and healthy subjects is increased using the proposed ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mismatch negativity is an electrophysiological marker of auditory change detection in the event-related brain potential and has been proposed to reflect an automatic comparison process between an incoming stimulus and the representation of prior items in a sequence. There is evidence for two main functional subcomponents comprising the MMN, generated by temporal and frontal brain areas, respectively. Using data obtained in an MMN paradigm, we performed time-frequency analysis to reveal the changes in oscillatory neural activity in the theta band. The results suggest that the frontal component of the MMN is brought about by an increase in theta power for the deviant trials and, possibly, by an additional contribution of theta phase alignment. By contrast, the temporal component of the MMN, best seen in recordings from mastoid electrodes, is generated by phase resetting of theta rhythm with no concomitant power modulation. Thus, frontal and temporal MMN components do not only differ with regard to their functional significance but also appear to be generated by distinct neurophysiological mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este estudio es describir las alteraciones interictales de perfusión en RM por técnica de arterial spin labelled (ASL) y difusión, en pacientes con epilepsia focal y analizar su posible valor lateralizador/localizador del foco epileptógeno. Se trata de un estudio transversal de 53 pacientes adultos con epilepsia focal diagnosticados por semiología, RM y EEG. En todos ellos se realizó una RM de 3 TESLA con protocolo de epilepsia, que incluía secuencias de ASL. Las imágenes fueron sometidas a un análisis visual por un neurorradiólogo, clasificándolas en alteraciones de perfusión hemisféricas o focales. La muestra tenía un 51% de hombres y una edad media de 42.9 años (±16.5). El 60% tenían epilepsias sintomáticas. El 64% eran fármacorresistentes. Las etiologías más frecuentes fueron vascular (15%), malformaciones del desarrollo cortical (15%) y tumoral (13%). Un 45% se clasificaron como epilepsia temporal, 32% frontal y 13% temporal posterior, 8% occipital y 2% parietal. El 45% presentaban crisis parciales complejas, entre las que la semiología automotora era la más frecuente (36%). El ASL mostró, en un 74% de los pacientes, alteraciones de la perfusión interhemisféricas, observándose un valor lateralizador de éstas, especialmente cuando se observa hiperperfusión en la localización del foco y cuando se trata de epilepsia sintomática. Se observaron alteraciones focales en ASL que a pesar de encontrarse en un bajo porcentaje podrían tener valor localizador del área epileptógena.