6 resultados para EXTRACELLULAR ACETYLCHOLINE
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Estudi realitzat a partir d’una estada a la Universidad de Zaragoza, Espanya, entre novembre del 2007 i abril del 2008. Mycobacterium vaccae és un micobacteri ambiental de creixement ràpid molt estudiat pel seu interès com a possible ús immunoterapéutic en el tractament de la tuberculosis i altres malalties. M.vaccae a l’igual que altres micobacteris presenta dues morfologies colonials: llisa i rugosa. M.vaccae ATCC15483T té originàriament una morfologia llisa. Quant aquest es cultiva en medi sòlid a 30ºC apareixen espontàniament variants rugoses estables que no reverteixen a llises. El motiu pel qual aquest procés té lloc no es coneix, encara que s’ha descrit en Mycobacterium smegmatis i en Mycobacterium avium que els lípids de la paret cel•lular es troben involucrats en aquest canvi de morfologia colonial. L’anàlisi dels contingut en lípids i glicolípids de la paret cel•lular de les dos variants morfològiques de M.vaccae, ens ha indicat que les soques llises presenten un compost extracel•lular que no es troba en les rugoses i que mitjançant l’anàlisi estructural d’aquest compost ha sigut identificat com un polièster extracel•lular de cadena llarga. El present estudi s’ha centrat en determinar els gens implicats en la síntesis d’aquest compost. Per a realitzar aquest anàlisi genètic s’ha construit una llibreria de mutants per transposició de la soca llisa de M. vaccae mitjançant un plàsmid ts/sac i un transposó. S’han obtingut colònies de morfologia rugosa on el plàsmid s’ha insertat en la zona del genoma que codifica per aquest compost extracel•lular. Aquests nous mutants s’han analitzat mitjançant tècniques moleculars (PCR, Southern y seqüenciació). A mès, s’ha construit una llibreria genòmica amb DNA de la soca llisa en plàsmids replicatius de micobacteris derivats de pAL5000 i s’ha transformat la soca rugosa seleccionant per a un fenotip llis estudiant els gens que complementen.
Resumo:
A central feature of drugs of abuse is to induce gene expression in discrete brain structures that are critically involved in behavioral responses related to addictive processes. Although extracellular signal-regulated kinase (ERK) has been implicated in several neurobiological processes, including neuronal plasticity, its role in drug addiction remains poorly understood. This study was designed to analyze the activation of ERK by cocaine, its involvement in cocaine-induced early and long-term behavioral effects, as well as in gene expression. We show, by immunocytochemistry, that acute cocaine administration activates ERK throughout the striatum, rapidly but transiently. This activation was blocked when SCH 23390 [a specific dopamine (DA)-D1 antagonist] but not raclopride (a DA-D2 antagonist) was injected before cocaine. Glutamate receptors of NMDA subtypes also participated in ERK activation, as shown after injection of the NMDA receptor antagonist MK 801. The systemic injection of SL327, a selective inhibitor of the ERK kinase MEK, before cocaine, abolished the cocaine-induced ERK activation and decreased cocaine-induced hyperlocomotion, indicating a role of this pathway in events underlying early behavioral responses. Moreover, the rewarding effects of cocaine were abolished by SL327 in the place-conditioning paradigm. Because SL327 antagonized cocaine-induced c-fos expression and Elk-1 hyperphosphorylation, we suggest that the ERK intracellular signaling cascade is also involved in the prime burst of gene expression underlying long-term behavioral changes induced by cocaine. Altogether, these results reveal a new mechanism to explain behavioral responses of cocaine related to its addictive properties.
Resumo:
Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradativeenzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria