6 resultados para Damage Detection
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
El uso intensivo y prolongado de computadores de altas prestaciones para ejecutar aplicaciones computacionalmente intensivas, sumado al elevado número de elementos que los componen, incrementan drásticamente la probabilidad de ocurrencia de fallos durante su funcionamiento. El objetivo del trabajo es resolver el problema de tolerancia a fallos para redes de interconexión de altas prestaciones, partiendo del diseño de políticas de encaminamiento tolerantes a fallos. Buscamos resolver una determinada cantidad de fallos de enlaces y nodos, considerando sus factores de impacto y probabilidad de aparición. Para ello aprovechamos la redundancia de caminos de comunicación existentes, partiendo desde enfoques de encaminamiento adaptativos capaces de cumplir con las cuatro fases de la tolerancia a fallos: detección del error, contención del daño, recuperación del error, y tratamiento del fallo y continuidad del servicio. La experimentación muestra una degradación de prestaciones menor al 5%. En el futuro, se tratará la pérdida de información en tránsito.
Resumo:
L’objectiu principal del projecte és el de classificar escenes de carretera en funció del contingut de les imatges per així poder fer un desglossament sobre quin tipus de situació tenim en el moment. És important que fixem els paràmetres necessaris en funció de l’escenari en què ens trobem per tal de treure el màxim rendiment possible a cada un dels algoritmes. La seva funcionalitat doncs, ha de ser la d’avís i suport davant els diferents escenaris de conducció. És a dir, el resultat final ha de contenir un algoritme o aplicació capaç de classificar les imatges d’entrada en diferents tipus amb la màxima eficiència espacial i temporal possible. L’algoritme haurà de classificar les imatges en diferents escenaris. Els algoritmes hauran de ser parametritzables i fàcilment manejables per l’usuari. L’eina utilitzada per aconseguir aquests objectius serà el MATLAB amb les toolboxs de visió i xarxes neuronals instal·lades.
Resumo:
This work covers two aspects. First, it generally compares and summarizes the similarities and differences of state of the art feature detector and descriptor and second it presents a novel approach of detecting intestinal content (in particular bubbles) in capsule endoscopy images. Feature detectors and descriptors providing invariance to change of perspective, scale, signal-noise-ratio and lighting conditions are important and interesting topics in current research and the number of possible applications seems to be numberless. After analysing a selection of in the literature presented approaches, this work investigates in their suitability for applications information extraction in capsule endoscopy images. Eventually, a very good performing detector of intestinal content in capsule endoscopy images is presented. A accurate detection of intestinal content is crucial for all kinds of machine learning approaches and other analysis on capsule endoscopy studies because they occlude the field of view of the capsule camera and therefore those frames need to be excluded from analysis. As a so called “byproduct” of this investigation a graphical user interface supported Feature Analysis Tool is presented to execute and compare the discussed feature detectors and descriptor on arbitrary images, with configurable parameters and visualized their output. As well the presented bubble classifier is part of this tool and if a ground truth is available (or can also be generated using this tool) a detailed visualization of the validation result will be performed.
Resumo:
The RT-PCR technique for the detection of apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV) and pear blister canker viroid (PBCV) was evaluated for health control of fruit plants from nurseries. The technique was evaluated in purified RNA and crude extracts and also in phloem collected in autumn and from young spring shoots. The results obtained for phytoplasma detection with ribosomal and non-ribosomal primers are also presented.
Resumo:
Background and Purpose Early prediction of motor outcome is of interest in stroke management. We aimed to determine whether lesion location at DTT is predictive of motor outcome after acute stroke and whether this information improves the predictive accuracy of the clinical scores. Methods We evaluated 60 consecutive patients within 12 hours of MCA stroke onset. We used DTT to evaluate CST involvement in the MC and PMC, CS, CR, and PLIC and in combinations of these regions at admission, at day 3, and at day 30. Severity of limb weakness was assessed using the m-NIHSS (5a, 5b, 6a, 6b). We calculated volumes of infarct and FA values in the CST of the pons. Results Acute damage to the PLIC was the best predictor associated with poor motor outcome, axonal damage, and clinical severity at admission (P&.001). There was no significant correlation between acute infarct volume and motor outcome at day 90 (P=.176, r=0.485). The sensitivity, specificity, and positive and negative predictive values of acute CST involvement at the level of the PLIC for 4 motor outcome at day 90 were 73.7%, 100%, 100%, and 89.1%, respectively. In the acute stage, DTT predicted motor outcome at day 90 better than the clinical scores (R2=75.50, F=80.09, P&.001). Conclusions In the acute setting, DTT is promising for stroke mapping to predict motor outcome. Acute CST damage at the level of the PLIC is a significant predictor of unfavorable motor outcome.