36 resultados para Consommation de poisson
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We propose a generalization of the reduction of Poisson manifolds by distributions introduced by Marsden and Ratiu. Our proposal overcomes some of the restrictions of the original procedure, and makes the reduced Poisson structure effectively dependent on the distribution. Different applications are discussed, as well as the algebraic interpretation of the procedure and its formulation in terms of Dirac structures.
Resumo:
In this paper, we study formal deformations of Poisson structures, especially for three families of Poisson varieties in dimensions two and three. For these families of Poisson structures, using an explicit basis of the second Poisson cohomology space, we solve the deformation equations at each step and obtain a large family of formal deformations for each Poisson structure which we consider. With the help of an explicit formula, we show that this family contains, modulo equivalence, all possible formal eformations. We show moreover that, when the Poisson structure is generic, all members of the family are non-equivalent.
Resumo:
In automobile insurance, it is useful to achieve a priori ratemaking by resorting to gene- ralized linear models, and here the Poisson regression model constitutes the most widely accepted basis. However, insurance companies distinguish between claims with or without bodily injuries, or claims with full or partial liability of the insured driver. This paper exa- mines an a priori ratemaking procedure when including two di®erent types of claim. When assuming independence between claim types, the premium can be obtained by summing the premiums for each type of guarantee and is dependent on the rating factors chosen. If the independence assumption is relaxed, then it is unclear as to how the tari® system might be a®ected. In order to answer this question, bivariate Poisson regression models, suitable for paired count data exhibiting correlation, are introduced. It is shown that the usual independence assumption is unrealistic here. These models are applied to an automobile insurance claims database containing 80,994 contracts belonging to a Spanish insurance company. Finally, the consequences for pure and loaded premiums when the independence assumption is relaxed by using a bivariate Poisson regression model are analysed.
Resumo:
We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed methods in the case of smooth compactly supported initial data. The issue of energy conservation is also analyzed for some of the methods.
Resumo:
When actuaries face with the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or homeowner's insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to multivariate Poisson date, mainly because of their computational di±culties. Bayesian inference based on MCMC helps to solve this problem (and also lets us derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claims. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models and their zero-inflated versions.
Resumo:
We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.
Resumo:
It has been argued that by truncating the sample space of the negative binomial and of the inverse Gaussian-Poisson mixture models at zero, one is allowed to extend the parameter space of the model. Here that is proved to be the case for the more general three parameter Tweedie-Poisson mixture model. It is also proved that the distributions in the extended part of the parameter space are not the zero truncation of mixed poisson distributions and that, other than for the negative binomial, they are not mixtures of zero truncated Poisson distributions either. By extending the parameter space one can improve the fit when the frequency of one is larger and the right tail is heavier than is allowed by the unextended model. Considering the extended model also allows one to use the basic maximum likelihood based inference tools when parameter estimates fall in the extended part of the parameter space, and hence when the m.l.e. does not exist under the unextended model. This extended truncated Tweedie-Poisson model is proved to be useful in the analysis of words and species frequency count data.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics
Resumo:
In the present paper we characterize the optimal use of Poisson signals to establish incentives in the "bad" and "good" news models of Abreu et al. [1]. In the former, for small time intervals the signals' quality is high and we observe a "selective" use of information; otherwise there is a "mass" use. In the latter, for small time intervals the signals' quality is low and we observe a "fine" use of information; otherwise there is a "non-selective" use. JEL: C73, D82, D86. KEYWORDS: Repeated Games, Frequent Monitoring, Public Monitoring, Infor- mation Characteristics.
Resumo:
This paper assesses empirically the importance of size discrimination and disaggregate data for deciding where to locate a start-up concern. We compare three econometric specifications using Catalan data: a multinomial logit with 4 and 41 alternatives (provinces and comarques, respectively) in which firm size is the main covariate; a conditional logit with 4 and 41 alternatives including attributes of the sites as well as size-site interactions; and a Poisson model on the comarques and the full spatial choice set (942 municipalities) with site-specific variables. Our results suggest that if these two issues are ignored, conclusions may be misleading. We provide evidence that large and small firms behave differently and conclude that Catalan firms tend to choose between comarques rather than between municipalities. Moreover, labour-intensive firms seem more likely to be located in the city of Barcelona. Keywords: Catalonia, industrial location, multinomial response model. JEL: C250, E30, R00, R12
Resumo:
We review recent likelihood-based approaches to modeling demand for medical care. A semi-nonparametric model along the lines of Cameron and Johansson's Poisson polynomial model, but using a negative binomial baseline model, is introduced. We apply these models, as well a semiparametric Poisson, hurdle semiparametric Poisson, and finite mixtures of negative binomial models to six measures of health care usage taken from the Medical Expenditure Panel survey. We conclude that most of the models lead to statistically similar results, both in terms of information criteria and conditional and unconditional prediction. This suggests that applied researchers may not need to be overly concerned with the choice of which of these models they use to analyze data on health care demand.