39 resultados para Computer Imaging, Vision, Pattern Recognition and Graphics
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
One of the most important problems in optical pattern recognition by correlation is the appearance of sidelobes in the correlation plane, which causes false alarms. We present a method that eliminate sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even higher than the central correlation. Satisfactory results were obtained in both computer simulations and optical implementation.
Resumo:
Desenvolupament una aplicació informàtica basada en un sistema de visió per computador, la qual permeti donar una resposta en forma d'informació a partir d'una query d'una imatge que conté una escena o objecte en concret de manera que permeti reconèixer els objectes que apareixen en una imatge per llavors donar informació referent al contingut de la imatge a l’usuari que ha fet la consulta. Resumint, es tracta d’analitzar, dissenyar i construir un sistemade visió per computador capaç de reconèixer objectes d’interès en imatges
Resumo:
In this project, we have investigated new ways of modelling and analysis of human vasculature from Medical images. The research was divided in two main areas: cerebral vasculature analysis and coronary arteries modeling. Regarding cerebral vasculature analysis, we have studed cerebral aneurysms, internal carotid and the Circle of Willis (CoW). Aneurysms are abnormal vessel enlargements that can rupture causing important cerebral damages or death. The understanding of this pathology, together with its virtual treatment, and image diagnosis and prognosis, includes identification and detailed measurement of the aneurysms. In this context, we have proposed two automatic aneurysm isolation method, to separate the abnormal part of the vessel from the healthy part, to homogenize and speed-up the processing pipeline usually employed to study this pathology, [Cardenes2011TMI, arrabide2011MedPhys]. The results obtained from both methods have been also compared and validatied in [Cardenes2012MBEC]. A second important task here the analysis of the internal carotid [Bogunovic2011Media] and the automatic labelling of the CoW, Bogunovic2011MICCAI, Bogunovic2012TMI]. The second area of research covers the study of coronary arteries, specially coronary bifurcations because there is where the formation of atherosclerotic plaque is more common, and where the intervention is more challenging. Therefore, we proposed a novel modelling method from Computed Tomography Angiography (CTA) images, combined with Conventional Coronary Angiography (CCA), to obtain realistic vascular models of coronary bifurcations, presented in [Cardenes2011MICCAI], and fully validated including phantom experiments in [Cardene2013MedPhys]. The realistic models obtained from this method are being used to simulate stenting procedures, and to investigate the hemodynamic variables in coronary bifurcations in the works submitted in [Morlachi2012, Chiastra2012]. Additionally, another preliminary work has been done to reconstruct the coronary tree from rotational angiography, and published in [Cardenes2012ISBI].
Resumo:
Having lived through a bloody civil war in the 1930s followed by four decades of General Franco’s dictatorship, the Spanish state carried out a transition to a democratic system at the end of the 1970s. The 1978 Constitution was the legal outcome of this transition process. Among other things, it established a territorial model – the so-called “Estado de las Autonomías” (State of Autonomous Communities) – which was designed to satisfy the historical demands for recognition and self-government of, above all, the citizens and institutions of Catalonia and the Basque Country .In recent years support for independence has increased in Catalonia. Different indicators show that pro-independence demands are endorsed by a majority of its citizens, as well as by most of the political parties and organizations that represent its civil society. This is a new phenomenon. Those in favour of independence had been in the minority throughout the 20th century. Nowadays, however, demands of a pro-autonomy and pro-federalist nature, which until recently had been dominant, have gradually lost public support in favour of demands for self-determination and secession. This paper analyses the massive increase in support for secession in Catalonia during the early years of the 21st century. After describing the different theories of secession in plurinational liberal democracies (section 1), we analyse Catalonia’s political evolution over the past decade focusing on the shortcomings with regard to constitutional recognition and accommodation displayed by the Spanish political system. The latter have been exacerbated by the reform process of Catalonia’s Statute of Autonomy (2006) and the subsequent judgement of Spain’s Constitutional Court regarding the aforementioned Statute (2010) (section 2). Finally, we present our conclusions by linking the Catalan case with theories of secession applied to plurinational contexts
Resumo:
El principal objectiu d’aquest projecte és aconseguir classificar diferents vídeos d’esports segons la seva categoria. Els cercadors de text creen un vocabulari segons el significat de les diferents paraules per tal de poder identificar un document. En aquest projecte es va fer el mateix però mitjançant paraules visuals. Per exemple, es van intentar englobar com a una única paraula les diferents rodes que apareixien en els cotxes de rally. A partir de la freqüència amb què apareixien les paraules dels diferents grups dins d’una imatge vàrem crear histogrames de vocabulari que ens permetien tenir una descripció de la imatge. Per classificar un vídeo es van utilitzar els histogrames que descrivien els seus fotogrames. Com que cada histograma es podia considerar un vector de valors enters vàrem optar per utilitzar una màquina classificadora de vectors: una Support vector machine o SVM
Resumo:
Aquest projecte s’emmarca dins de l’àmbit de la visió per computador, concretament en la utilització de dades de profunditat obtingudes a través d’un emissor i sensor de llum infraroja.El propòsit principal d’aquest projecte és mostrar com adaptar aquestes tecnologies, a l’abast de qualsevol particular, de forma que un usuari durant la pràctica d’una activitat esportiva concreta, rebi informació visual continua dels moviments i gestos incorrectes que està realitzant, en base a uns paràmetres prèviament establerts.L’objectiu d’aquest projecte consisteix en fer una lectura constant en temps real d’una persona practicant una selecció de diverses activitats esportives estàtiques utilitzant un sensor Kinect. A través de les dades obtingudes pel sensor Kinect i utilitzant les llibreries de “skeleton traking” proporcionades per Microsoft s’haurà d’interpretar les dades posturals obtingudes per cada tipus d’esport i indicar visualment i d’una manera intuïtiva els errors que està cometent en temps real, de manera que es vegi clarament a quina part del seu cos realitza un moviment incorrecte per tal de poder corregir-lo ràpidament. El entorn de desenvolupament que s’utilitza per desenvolupar aquesta aplicació es Microsoft Viusal Studio 2010.El llenguatge amb el qual es treballarà sobre Microsoft Visual Studio 2010 és C#
Resumo:
Peer-reviewed
Resumo:
En aquest projecte es pretén utilitzar mètodes coneguts com ara Viola&Jones (detecció) i EigenFaces (reconeixement) per a detectar i reconèixer cares dintre d’imatges de vídeo. Per a aconseguir aquesta tasca cal partir d’un conjunt de dades d’entrenament per a cada un dels mètodes (base de dades formada per imatges i anotacions manuals). A partir d’aquí, l’aplicació, ha de ser capaç de detectar cares en noves imatges i reconèixer-les (identificar de quina cara es tracta)
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach
Resumo:
This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.
Resumo:
We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
Positioning a robot with respect to objects by using data provided by a camera is a well known technique called visual servoing. In order to perform a task, the object must exhibit visual features which can be extracted from different points of view. Then, visual servoing is object-dependent as it depends on the object appearance. Therefore, performing the positioning task is not possible in presence of nontextured objets or objets for which extracting visual features is too complex or too costly. This paper proposes a solution to tackle this limitation inherent to the current visual servoing techniques. Our proposal is based on the coded structured light approach as a reliable and fast way to solve the correspondence problem. In this case, a coded light pattern is projected providing robust visual features independently of the object appearance