17 resultados para Clustering analysis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
Immobile location-allocation (LA) problems is a type of LA problem that consists in determining the service each facility should offer in order to optimize some criterion (like the global demand), given the positions of the facilities and the customers. Due to the complexity of the problem, i.e. it is a combinatorial problem (where is the number of possible services and the number of facilities) with a non-convex search space with several sub-optimums, traditional methods cannot be applied directly to optimize this problem. Thus we proposed the use of clustering analysis to convert the initial problem into several smaller sub-problems. By this way, we presented and analyzed the suitability of some clustering methods to partition the commented LA problem. Then we explored the use of some metaheuristic techniques such as genetic algorithms, simulated annealing or cuckoo search in order to solve the sub-problems after the clustering analysis
Resumo:
We present in this paper the results of the application of several visual methods on a group of locations, dated between VI and I centuries BC, of the ager Tarraconensis (Tarragona, Spain) a Hinterland of the roman colony of Tarraco. The difficulty in interpreting the diverse results in a combined way has been resolved by means of the use of statistical methods, such as Principal Components Analysis (PCA) and K-means clustering analysis. These methods have allowed us to carry out site classifications in function of the landscape's visual structure that contains them and of the visual relationships that could be given among them.
Resumo:
Image segmentation of natural scenes constitutes a major problem in machine vision. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. This approach begins by detecting the main contours of the scene which are later used to guide a concurrent set of growing processes. A previous analysis of the seed pixels permits adjustment of the homogeneity criterion to the region's characteristics during the growing process. Since the high variability of regions representing outdoor scenes makes the classical homogeneity criteria useless, a new homogeneity criterion based on clustering analysis and convex hull construction is proposed. Experimental results have proven the reliability of the proposed approach
Resumo:
Creative industries tend to concentrate mainly around large- and medium-sized cities, forming creative local production systems. The text analyses the forces behind clustering of creative industries to provide the first empirical explanation of the determinants of creative employment clustering following a multidisciplinary approach based on cultural and creative economics, evolutionary geography and urban economics. A comparative analysis has been performed for Italy and Spain. The results show different patterns of creative employment clustering in both countries. The small role of historical and cultural endowments, the size of the place, the average size of creative industries, the productive diversity and the concentration of human capital and creative class have been found as common factors of clustering in both countries.
Resumo:
HEMOLIA (a project under European community’s 7th framework programme) is a new generation Anti-Money Laundering (AML) intelligent multi-agent alert and investigation system which in addition to the traditional financial data makes extensive use of modern society’s huge telecom data source, thereby opening up a new dimension of capabilities to all Money Laundering fighters (FIUs, LEAs) and Financial Institutes (Banks, Insurance Companies, etc.). This Master-Thesis project is done at AIA, one of the partners for the HEMOLIA project in Barcelona. The objective of this thesis is to find the clusters in a network drawn by using the financial data. An extensive literature survey has been carried out and several standard algorithms related to networks have been studied and implemented. The clustering problem is a NP-hard problem and several algorithms like K-Means and Hierarchical clustering are being implemented for studying several problems relating to sociology, evolution, anthropology etc. However, these algorithms have certain drawbacks which make them very difficult to implement. The thesis suggests (a) a possible improvement to the K-Means algorithm, (b) a novel approach to the clustering problem using the Genetic Algorithms and (c) a new algorithm for finding the cluster of a node using the Genetic Algorithm.
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
Our essay aims at studying suitable statistical methods for the clustering ofcompositional data in situations where observations are constituted by trajectories ofcompositional data, that is, by sequences of composition measurements along a domain.Observed trajectories are known as “functional data” and several methods have beenproposed for their analysis.In particular, methods for clustering functional data, known as Functional ClusterAnalysis (FCA), have been applied by practitioners and scientists in many fields. To ourknowledge, FCA techniques have not been extended to cope with the problem ofclustering compositional data trajectories. In order to extend FCA techniques to theanalysis of compositional data, FCA clustering techniques have to be adapted by using asuitable compositional algebra.The present work centres on the following question: given a sample of compositionaldata trajectories, how can we formulate a segmentation procedure giving homogeneousclasses? To address this problem we follow the steps described below.First of all we adapt the well-known spline smoothing techniques in order to cope withthe smoothing of compositional data trajectories. In fact, an observed curve can bethought of as the sum of a smooth part plus some noise due to measurement errors.Spline smoothing techniques are used to isolate the smooth part of the trajectory:clustering algorithms are then applied to these smooth curves.The second step consists in building suitable metrics for measuring the dissimilaritybetween trajectories: we propose a metric that accounts for difference in both shape andlevel, and a metric accounting for differences in shape only.A simulation study is performed in order to evaluate the proposed methodologies, usingboth hierarchical and partitional clustering algorithm. The quality of the obtained resultsis assessed by means of several indices
Resumo:
Globalization involves several facility location problems that need to be handled at large scale. Location Allocation (LA) is a combinatorial problem in which the distance among points in the data space matter. Precisely, taking advantage of the distance property of the domain we exploit the capability of clustering techniques to partition the data space in order to convert an initial large LA problem into several simpler LA problems. Particularly, our motivation problem involves a huge geographical area that can be partitioned under overall conditions. We present different types of clustering techniques and then we perform a cluster analysis over our dataset in order to partition it. After that, we solve the LA problem applying simulated annealing algorithm to the clustered and non-clustered data in order to work out how profitable is the clustering and which of the presented methods is the most suitable
Resumo:
BACKGROUND: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.
Resumo:
The article examines the structure of the collaboration networks of research groups where Slovenian and Spanish PhD students are pursuing their doctorate. The units of analysis are student-supervisor dyads. We use duocentred networks, a novel network structure appropriate for networks which are centred around a dyad. A cluster analysis reveals three typical clusters of research groups. Those which are large and belong to several institutions are labelled under a bridging social capital label. Those which are small, centred in a single institution but have high cohesion are labelled as bonding social capital. Those which are small and with low cohesion are called weak social capital groups. Academic performance of both PhD students and supervisors are highest in bridging groups and lowest in weak groups. Other variables are also found to differ according to the type of research group. At the end, some recommendations regarding academic and research policy are drawn
Resumo:
We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the clustering coefficient in that it involves the properties of two¿and not just one¿vertices. The formalism is completed with the definition of a three-vertex correlation function, which is the fundamental quantity describing the properties of clustered networks. The formalism suggests different metrics that are able to thoroughly characterize transitive relations. A rigorous analysis of several real networks, which makes use of this formalism and the metrics, is also provided. It is also found that clustered networks can be classified into two main groups: the weak and the strong transitivity classes. In the first class, edge multiplicity is small, with triangles being disjoint. In the second class, edge multiplicity is high and so triangles share many edges. As we shall see in the following paper, the class a network belongs to has strong implications in its percolation properties.
Resumo:
The percolation properties of clustered networks are analyzed in detail. In the case of weak clustering, we present an analytical approach that allows us to find the critical threshold and the size of the giant component. Numerical simulations confirm the accuracy of our results. In more general terms, we show that weak clustering hinders the onset of the giant component whereas strong clustering favors its appearance. This is a direct consequence of the differences in the k-core structure of the networks, which are found to be totally different depending on the level of clustering. An empirical analysis of a real social network confirms our predictions.
Resumo:
Background: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure.Results: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae.Conclusion: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.