11 resultados para Classifiers ensemble
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We are going to implement the "GA-SEFS" by Tsymbal and analyse experimentally its performance depending on the classifier algorithms used in the fitness function (NB, MNge, SMO). We are also going to study the effect of adding to the fitness function a measure to control complexity of the base classifiers.
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.
Resumo:
The extended Gaussian ensemble (EGE) is introduced as a generalization of the canonical ensemble. This ensemble is a further extension of the Gaussian ensemble introduced by Hetherington [J. Low Temp. Phys. 66, 145 (1987)]. The statistical mechanical formalism is derived both from the analysis of the system attached to a finite reservoir and from the maximum statistical entropy principle. The probability of each microstate depends on two parameters ß and ¿ which allow one to fix, independently, the mean energy of the system and the energy fluctuations, respectively. We establish the Legendre transform structure for the generalized thermodynamic potential and propose a stability criterion. We also compare the EGE probability distribution with the q-exponential distribution. As an example, an application to a system with few independent spins is presented.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
In this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection.
Resumo:
In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull is used to define the boundary of the target class defining the problem. Expansions and contractions of this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a point belongs to the convex hull model in high dimensional spaces is approximated by means of random projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model non-convex structures. Experimental results show that the proposed strategy is significantly better than state of the art one-class classification methods on over 200 datasets.
Resumo:
Este trabajo presenta una metodología para detectar y realizar el seguimiento de características faciales. En el primer paso del procedimiento se detectan caras mediante Adaboost con cascadas de clasificadores débiles. El segundo paso busca las características internas de la cara mediante el CSR, detectando zonas de interés. Una vez que estas características se capturan, un proceso de tracking basado en el descriptor SIFT, que hemos llamado pseudo-SIFT, es capaz de guardar información sobre la evolución de movimiento en las regiones detectadas. Además, un conjunto de datos públicos ha sido desarrollado con el propósito de compartirlo con otras investigaciones sobre detección, clasificación y tracking. Experimentos reales muestran la robustez de este trabajo y su adaptabilidad para trabajos futuros.
Resumo:
In this paper, we analyse the asymptotic behavior of solutions of the continuous kinetic version of flocking by Cucker and Smale [16], which describes the collective behavior of an ensemble of organisms, animals or devices. This kinetic version introduced in [24] is here obtained starting from a Boltzmann-type equation. The large-time behavior of the distribution in phase space is subsequently studied by means of particle approximations and a stability property in distances between measures. A continuous analogue of the theorems of [16] is shown to hold for the solutions on the kinetic model. More precisely, the solutions will concentrate exponentially fast their velocity to their mean while in space they will converge towards a translational flocking solution.
Resumo:
A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques