37 resultados para Chromium enriched yeast

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: The use of an enriched CO2 atmosphere in tree nurseries has been envisaged as a promising technique to increase productivity and to obtain seedlings with a higher root/shoot ratio, an essential trait to respond to water stress in Mediterranean-type ecosystems. In that framework, we have analyzed the effects of three levels of atmospheric CO2 concentration (350, 500 and 700 ppm) on the germination rate, growth and morphology of seedlings of two Mediterranean oaks used in reforestation programs: the evergreen Quercus ilex L. and the deciduous Quercus cerrioides Wilk. et Costa. CO2 enrichment increased the germination rate of Q. cerrioides (from 70±7 to 81±3 %) while it decreased that of Q. ilex (from 71±10 to 41±12 %). Seedlings of both species increased approximately 60% their total biomass in response to CO2 enrichment but at two different CO2 concentrations: 500 ppm for Q. cerrioides and 700 ppm for Q. ilex. This increase in seedlings biomass was entirely due to an augmentation of root biomass. Considering germination and biomass partitioning, an enriched CO2 atmosphere might not be appropriate for growing Mediterranean evergreen oaks, such as Q. ilex, since it reduces acorn germination and the only gains in root biomass occur at a high concentration (700 ppm). On the other hand, a moderate CO2 enrichment (500 ppm) appears as a promising nursery technique to stimulate the germination, growth and root/shoot ratio of deciduous oaks, such as Q. cerrioides. Resumen: El uso de una atmósfera enriquecida en CO2 durante la fase de vivero puede contribuir a aumentar la producción viverística, a la vez que ayudar a conseguir plántulas con una mayor relación biomasa subterránea/biomasa aérea, más adecuadas para hacer frente al severo estrés hídrico que generalmente limita el éxito de las repoblaciones en el clima Mediterráneo. En este estudio hemos analizado el efecto de tres niveles de abonado carbónico atmosférico (350, 500 y 750 ppm) en la germinación y morfología de plántulas de encina (Quercus ilex) y roble cerrioide (Quercus cerrioides). Una atmósfera enriquecida en CO2 incrementó la germinación de Q. cerrioides (de 70±7 a 81±3 %) mientras que disminuyó la de Q. ilex (de 71±10 a 41±12 %). Las plántulas de ambas especies incrementaron aproximadamente un 60% su biomasa en respuesta a una mayor concentración de CO2, aunque esta respuesta se produjo a diferentes dosis: 500 ppm en Q. cerrioides y 700 ppm en Q. ilex. El aumento en la biomasa total de las plántulas se debió enteramente a un mayor desarrollo de su sistema radical, Considerando tanto la germinación como los efectos sobre la relación biomasa subterránea/biomasa aérea, una atmósfera enriquecida en CO2 no parece ser un tratamiento adecuado para la producción en vivero de plántulas de Q.ilex, puesto que diminuye su germinación y solo aumenta su sistema radicular a dosis muy elevadas (700 ppm). Por el contrario, un aumento moderado en la concentración de CO2 (500 ppm) aparece como una técnica interesante para estimular el crecimiento y obtener plántulas de Q. cerrioides con un sistema radical más desarrollado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a l’Institut National de la Recherche Agronomique, França, entre 2007 i 2009. Saccharomyces cerevisiae ha estat el llevat utilitzat durant mil.lenis en l'elaboració de vins. Tot i així, es té poc coneixement sobre les pressions de selecció que han actuat en la modelització del genoma dels llevats vínics. S’ha seqüenciat el genoma d'una soca vínica comercial, EC1118, obtenint 31 supercontigs que cobreixen el 97% del genoma de la soca de referència, S288c. S’ha trobat que el genoma de la soca vínica es diferencia bàsicament en la possessió de 3 regions úniques que contenen 34 gens implicats en funcions claus per al procés fermentatiu. A banda, s’han dut a terme estudis de filogènia i synteny (ordre dels gens) que mostren que una d'aquestes tres regions és pròxima a una espècie relacionada amb el gènere Saccharomyces, mentre que les altres dos regions tenen un origen no-Saccharomyces. S’ha identificat mitjançant PCR i seqüenciació a Zygosaccharomyces bailii, una espècie contaminant de les fermentacions víniques, com a espècie donadora d'una de les dues regions. Les hibridacions naturals entre soques de diferents espècies dins del grup Saccharomyces sensu stricto ja han estat descrites. El treball és el primer que presenta hibridacions entre espècies Saccharomyces i no-Saccharomyces (Z. bailii, en aquest cas). També s’assenyala que les noves regions es troben freqüent i diferencialment presents entre els clades de S. cerevisiae, trobant-se de manera gairebé exclusiva en el grup de les soques víniques, suggerint que es tracta d'una adquisició recent de transferència gènica. En general, les dades demostren que el genoma de les soques víniques pateix una constant remodelació mitjançant l'adquisició de gens exògens. Els resultats suggereixen que aquests processos estan afavorits per la proximitat ecològica i estan implicats en l'adaptació molecular de les soques víniques a les condicions d'elevada concentració en sucres, poc nitrogen i elevades concentracions en etanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to atoxic dose of this drug, and the relationship between caffeine and oxidative stress pathways.Methodology/Principal Findings: We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeinecontainingplates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H2O2-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 aresensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. Conclusions/Significance: With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we havedemonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxiredoxins are known to interact with hydrogen peroxide (H2O2) and to participate in oxidant scavenging, redox signal transduction, and heat-shock responses. The two-cysteine peroxiredoxin Tpx1 of Schizosaccharomyces pombe has been characterized as the H2O2 sensor that transduces the redox signal to the transcription factor Pap1. Here, we show that Tpx1 is essential for aerobic, but not anaerobic, growth. We demonstrate that Tpx1 has an exquisite sensitivity for its substrate, which explains its participation in maintaining low steady-state levels of H2O2. We also show in vitro and in vivo that inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid is always preceded by a sulfinic acid form in a covalently linked dimer, which may be important for understanding the kinetics of Tpx1 inactivation. Furthermore, we provide evidence that a strain expressing Tpx1.C169S, lacking the resolving cysteine, can sustain aerobic growth, and we show that small reductants can modulate the activity of the mutant protein in vitro, probably by supplying a thiol group to substitute for cysteine 169.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removal of introns during pre-mRNA splicing is a critical process in gene expression, and understanding its control at both single-gene and genomic levels is one of the great challenges in Biology. Splicing takes place in a dynamic, large ribonucleoprotein complex known as the spliceosome. Combining Genetics and Biochemistry, Saccharomyces cerevisiae provides insights into its mechanisms, including its regulation by RNA-protein interactions. Recent genome-wide analyses indicate that regulated splicing is broad and biologically relevant even in organisms with a relatively simple intronic structure, such as yeast. Furthermore, the possibility of coordination in splicing regulation at genomic level is becoming clear in this model organism. This should provide a valuable system to approach the complex problem of the role of regulated splicing in genomic expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor understanding of the spliceosomal mechanisms to select intronic 3' ends (3'ss) is a major obstacle to deciphering eukaryotic genomes. Here, we discern the rules for global 3'ss selection in yeast. We show that, in contrast to the uniformity of yeast splicing, the spliceosome uses all available 3'ss within a distance window from the intronic branch site (BS), and that in 70% of all possible 3'ss this is likely to be mediated by pre-mRNA structures. Our results reveal that one of these RNA folds acts as an RNA thermosensor, modulating alternative splicing in response to heat shock by controlling alternate 3'ss availability. Thus, our data point to a deeper role for the pre-mRNA in the control of its own fate, and to a simple mechanism for some alternative splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The cooperative interaction between transcription factors has a decisive role in the control of the fate of the eukaryotic cell. Computational approaches for characterizing cooperative transcription factors in yeast, however, are based on different rationales and provide a low overlap between their results. Because the wealth of information contained in protein interaction networks and regulatory networks has proven highly effective in elucidating functional relationships between proteins, we compared different sets of cooperative transcription factor pairs (predicted by four different computational methods) within the frame of those networks. Results: Our results show that the overlap between the sets of cooperative transcription factors predicted by the different methods is low yet significant. Cooperative transcription factors predicted by all methods are closer and more clustered in the protein interaction network than expected by chance. On the other hand, members of a cooperative transcription factor pair neither seemed to regulate each other nor shared similar regulatory inputs, although they do regulate similar groups of target genes. Conclusion: Despite the different definitions of transcriptional cooperativity and the different computational approaches used to characterize cooperativity between transcription factors, the analysis of their roles in the framework of the protein interaction network and the regulatory network indicates a common denominator for the predictions under study. The knowledge of the shared topological properties of cooperative transcription factor pairs in both networks can be useful not only for designing better prediction methods but also for better understanding the complexities of transcriptional control in eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a constituent of selenoproteins, selenium (Se) is considered an essential element for human health.The main way that Se enters the body is via the consumption of vegetables, whose concentration of thiselement depends on soil Se content. We grew cabbage, lettuce, chard and parsley, in peat enriched in Seby means of the additive Selcote Ultra®and Na2SeO3and Na2SeO4. Total Se in plants was determinedby acidic digestion and Se speciation by an enzymatic extraction. Both were measured by ICP/MS. Theconcentration ranges were between 0.1 mg Se kg−1and 30 mg Se kg−1for plants grown in Selcote Ultra®media, and between 0.4 mg Se kg−1and 1606 mg Se kg−1for those grown in peat enriched with Se sodiumsalts. We found Se (IV), Se (VI) and SeMet in all the extracts. Peat fortified with Selcote Ultra®gave slightlyhigher Se concentration than natural content values. For plants grown with selenium sodium salts, Secontent increases with the Se added and part of the inorganic Se was converted mainly to SeMet. A highSe fortification can damage or inhibit plant growth. Cabbage showed the greatest tolerance to Se.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was supported by grants from Spanish Ministry of Science andInnovation (MICINN) BIO2011-22568 & BIO2008-205.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Oxidative stress is a probable cause of aging and associated diseases. Reactive oxygen species (ROS) originate mainly from endogenous sources, namely the mitochondria. Methodology/Principal Findings: We analyzed the effect of aerobic metabolism on oxidative damage in Schizosaccharomyces pombe by global mapping of those genes that are required for growth on both respiratory-proficient media and hydrogen-peroxide-containing fermentable media. Out of a collection of approximately 2700 haploid yeast deletion mutants, 51 were sensitive to both conditions and 19 of these were related to mitochondrial function. Twelve deletion mutants lacked components of the electron transport chain. The growth defects of these mutants can be alleviated by the addition of antioxidants, which points to intrinsic oxidative stress as the origin of the phenotypes observed. These respiration-deficient mutants display elevated steady-state levels of ROS, probably due to enhanced electron leakage from their defective transport chains, which compromises the viability of chronologically-aged cells. Conclusion/Significance: Individual mitochondrial dysfunctions have often been described as the cause of diseases or aging, and our global characterization emphasizes the primacy of oxidative stress in the etiology of such processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have reported that a diet containing 10% cocoa, a rich source of flavonoids, has immunomodulatory effects on rats and, among others effects, is able to attenuate the immunoglobulin (Ig) synthesis in both systemic and intestinal compartments. The purpose of the present study was focused on investigating whether these effects were attributed exclusively to the flavonoid content or to other compounds present in cocoa. To this end, eight-week-old Lewis rats were fed, for two weeks, either a standard diet or three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0.2% polyphenols from conventional defatted cocoa, and two others with 0.4% and 0.8% polyphenols, respectively, from non-fermented cocoa. Diet intake and body weight were monitored and fecal samples were obtained throughout the study to determine fecal pH, IgA, bacteria proportions, and IgA-coated bacteria. Moreover, IgG and IgM concentrations in serum samples collected during the study were quantified. At the end of the dietary intervention no clear changes of serum IgG or IgM concentrations were quantified, showing few effects of cocoa polyphenol diets at the systemic level. However, in the intestine, all cocoa polyphenol-enriched diets attenuated the age-related increase of both fecal IgA and IgA-coated bacteria, as well as the proportion of bacteria in feces. As these effects were not dependent on the dose of polyphenol present in the diets, other compounds and/or the precise polyphenol composition present in cocoa raw material used for the diets could be key factors in this effect.