18 resultados para Chitosan scaffold
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Nanoparticles with pH-sensitive behavior may enhance the success of chemotherapy in many cancers by efficient intracellular drug delivery. Here, we investigated the effect of a bioactive surfactant with pH-sensitive properties on the antitumor activity and intracellular behavior of methotrexate-loaded chitosan nanoparticles (MTX-CS-NPs). NPs were prepared using a modified ionotropic complexation process, in which was included the surfactant derived from Nα,Nε-dioctanoyl lysine with an inorganic lithium counterion. The pH-sensitive behavior of NPs allowed accelerated release of MTX in an acidic medium, as well as membrane-lytic pH-dependent activity, which facilitated the cytosolic delivery of endocytosed materials. Moreover, our results clearly proved that MTX-CSNPs were more active against the tumor HeLa and MCF-7 cell lines than the free drug. The feasibilty of using NPs to target acidic tumor extracellular pH was also shown, as cytotoxicity against cancer cells was greater in a mildly acidic environment. Finally, the combined physicochemical and pH-sensitive properties of NPs generally allowed the entrapped drug to induce greater cell cycle arrest and apoptotic effects. Therefore, our overall results suggest that pH-sensitive MTX-CS-NPs could be potentially useful as a carrier system for tumor and intracellular drug delivery in cancer therapy.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Resumo:
Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.
Obtenció de nous anàlegs amb activitat brassinoesteroide mitjançant modelització molecular i síntesi
Resumo:
Els brassinoesteroides són productes naturals que actuen com a potents reguladors del creixement vegetal. Presenten aplicacions prometedores en l’agricultura degut a que, aplicats exògenament, augmenten la qualitat i la quantitat de les collites. Ara bé, el seu ús s’ha vist restringit degut a la seva costosa obtenció. Aquest fet ha motivat la recerca de nous compostos actius més assequibles. En aquest projecte es planteja el disseny i obtenció de nous anàlegs seguint diferents estratègies que impliquen tant l’ús de mètodes de modelització molecular com de síntesi orgànica. La primera d’aquestes estratègies consisteix en buscar compostos actius en bases de dades de compostos comercials a través de processos de Virtual Screening desenvolupats amb mètodes computacionals basats en Camps d’Interacció Molecular. Així, es van establir i interpretar models de Relacions Quantitatives Estructura-Activitat (QSAR) emprant descriptors independents de l’alineament (GRIND) i, amb col•laboració amb la Universitat de Perugia, aquest criteri de cerca es va ampliar amb l’aplicació de descriptors FLAP de nova generació. Una altra estratègia es va basar en intentar substituir l’esquelet esteroide dels brassinoesteroides per una estructura equivalent, fixant com a cadena lateral el grup (R)-hexahidromandelil. S’han aplicat dos criteris: mètodes computacionals basats en models QSAR establerts amb descriptors GRIND i també en la metodologia SHOP (scaffold hopping), i, per altra banda, anàlegs proposats racionalment a partir d’un estudi efectuat sobre disruptors endocrins no esteroïdals. Sobre les estructures trobades s’hi va unir la cadena lateral comercial esmentada per via sintètica, en la qual s’ha hagut de fer un èmfasi especial en grups protectors. En total, 49 estructures es proposen per a ser obtingudes sintèticament. També s’ha treballat en l’obtenció un agonista derivat de l’hipotètic antagonista KM-01. Totes les molècules candidates, ja siguin comercials o obtingudes sintèticament, estant sent avaluades en el test d’inclinació de la làmina d’arròs (RLIT).
Resumo:
En aquest treball es pretén obtenir material porós de PDLLA, amb ús potencial com a bastida en enginyeria tissular, mitjançant l’ús de freó R-134a com a fluid escumant. Per aquest motiu, s’ha realitzat un estudi on es valoren diferents variables com la temperatura de procés, la pressió de treball i l’ús de N2 en la despressurització que poden modificar la microestructura final de la bastida.
Resumo:
[spa]Objetivo: El objetivo de este estudio es el diseño de un parche bucoadhesivo para la administración transbucal de clorhidrato de doxepina utilizando diferentes polímeros así como la caracterización de dichos sistemas en cuanto al análisis calorimétrico y la capacidad de hinchamiento.Materiales y métodos: Se ha utilizado clorhidrato de doxepina y diferentes polímeros, carboximetilcelulosa sódica, hidroxipropilmetilcelulosa y chitosan. La calorimetría diferencial de barrido (DSC) se ha realizado en un dispositivo Mettler FP 80 equipado con un horno FP 85 y la capacidad de hinchamiento utilizando placas de agar.Resultados: Se obtienen termogramas de los parches y las mezclas físicas donde se observan transiciones endotérmicas entre 30 y 120º C y el pico endotérmico del principio activo en las mezclas físicas binarias. La entalpía de deshidratación es similar en los polímeros de carboximetilcelulosa sódica y chitosan (281 J/g) siendo menor en la película de hidroxipropilmetilcelulosa (251 J/g), al igual que el porcentaje de hidratación donde se demuestra que los parches elaborados con hidroxipropilmetilcelulosa presenta menor tendencia a captar agua (55,91 %) frente al 67,04 % y 67,30 % de la carboximetilcelulosa sódica y chitosan, respectivamente.Conclusión: Los resultados obtenidos muestran que existe compatibilidad entre los componentes de la formulación y los datos de entalpía se correlacionan con los datos obtenidos en el ensayo de hinchamiento.[eng]The aim of this study is to design a bucoadhesive patch for the transbuccal administration of doxepin hydrochloride using different polymers as well as the characterization of these systems for calorimetric analysis and the swelling capacity. Materials and methods: Doxepin hydrochloride was used as well as various polymers; carboxymethylcellulose sodium, hydroxypropylmethyl cellulose and chitosan. Differential scanning calorimetry (DSC) was carried out using a Mettler FP 80 device equipped with a FP 85 oven and the swelling capacity using agar plates. Results: Thermograms obtained patches and physical mixtures where there are endothermic transitions between 30 and 120º C and the endothermic peak of the active principle in binary physical mixtures. Dehydration enthalpy is similar in polymers of carboxymethylcellulose sodium and chitosan (281 J/g), the film having less hydroxypropylmethylcellulose (251 J/g), the percentage of moisture shows that the patches prepared with hydroxypropylmethylcellulose have less tendency to collect water (55.91 %) compared to 67.04 % and 67.30 % with sodium carboxymethylcellulose and chitosan, respectively. Conclusion: The results show that there is compatibility between the components of the formulation and the enthalpy data correlate
Resumo:
The numerous yeast genome sequences presently available provide a rich source of information for functional as well as evolutionary genomics but unequally cover the large phylogenetic diversity of extant yeasts. We present here the complete sequence of the nuclear genome of the haploid-type strain of Kuraishia capsulata (CBS1993(T)), a nitrate-assimilating Saccharomycetales of uncertain taxonomy, isolated from tunnels of insect larvae underneath coniferous barks and characterized by its copious production of extracellular polysaccharides. The sequence is composed of seven scaffolds, one per chromosome, totaling 11.4 Mb and containing 6,029 protein-coding genes, ~13.5% of which being interrupted by introns. This GC-rich yeast genome (45.7%) appears phylogenetically related with the few other nitrate-assimilating yeasts sequenced so far, Ogataea polymorpha, O. parapolymorpha, and Dekkera bruxellensis, with which it shares a very reduced number of tRNA genes, a novel tRNA sparing strategy, and a common nitrate assimilation cluster, three specific features to this group of yeasts. Centromeres were recognized in GC-poor troughs of each scaffold. The strain bears MAT alpha genes at a single MAT locus and presents a significant degree of conservation with Saccharomyces cerevisiae genes, suggesting that it can perform sexual cycles in nature, although genes involved in meiosis were not all recognized. The complete absence of conservation of synteny between K. capsulata and any other yeast genome described so far, including the three other nitrate-assimilating species, validates the interest of this species for long-range evolutionary genomic studies among Saccharomycotina yeasts.
Resumo:
A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron–sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron–sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary cooccurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell.
Resumo:
Transketolase is an enzyme involved in a critical step of the non-oxidative branch of the pentose phosphate pathway whose inhibition could lead to new anticancer drugs. Here, we report new human transketolase inhibitors, based on the phenyl urea scaffold, found by applying structure-based virtual screening. These inhibitors are designed to cover a hot spot in the dimerization interface of the homodimer of the enzyme, providing for the first time compounds with a suggested novel binding mode not based on mimicking the thiamine pyrophosphate cofactor.
Resumo:
[spa]Objetivo: El objetivo de este estudio es el diseño de un parche bucoadhesivo para la administración transbucal de clorhidrato de doxepina utilizando diferentes polímeros así como la caracterización de dichos sistemas en cuanto al análisis calorimétrico y la capacidad de hinchamiento.Materiales y métodos: Se ha utilizado clorhidrato de doxepina y diferentes polímeros, carboximetilcelulosa sódica, hidroxipropilmetilcelulosa y chitosan. La calorimetría diferencial de barrido (DSC) se ha realizado en un dispositivo Mettler FP 80 equipado con un horno FP 85 y la capacidad de hinchamiento utilizando placas de agar.Resultados: Se obtienen termogramas de los parches y las mezclas físicas donde se observan transiciones endotérmicas entre 30 y 120º C y el pico endotérmico del principio activo en las mezclas físicas binarias. La entalpía de deshidratación es similar en los polímeros de carboximetilcelulosa sódica y chitosan (281 J/g) siendo menor en la película de hidroxipropilmetilcelulosa (251 J/g), al igual que el porcentaje de hidratación donde se demuestra que los parches elaborados con hidroxipropilmetilcelulosa presenta menor tendencia a captar agua (55,91 %) frente al 67,04 % y 67,30 % de la carboximetilcelulosa sódica y chitosan, respectivamente.Conclusión: Los resultados obtenidos muestran que existe compatibilidad entre los componentes de la formulación y los datos de entalpía se correlacionan con los datos obtenidos en el ensayo de hinchamiento.[eng]The aim of this study is to design a bucoadhesive patch for the transbuccal administration of doxepin hydrochloride using different polymers as well as the characterization of these systems for calorimetric analysis and the swelling capacity. Materials and methods: Doxepin hydrochloride was used as well as various polymers; carboxymethylcellulose sodium, hydroxypropylmethyl cellulose and chitosan. Differential scanning calorimetry (DSC) was carried out using a Mettler FP 80 device equipped with a FP 85 oven and the swelling capacity using agar plates. Results: Thermograms obtained patches and physical mixtures where there are endothermic transitions between 30 and 120º C and the endothermic peak of the active principle in binary physical mixtures. Dehydration enthalpy is similar in polymers of carboxymethylcellulose sodium and chitosan (281 J/g), the film having less hydroxypropylmethylcellulose (251 J/g), the percentage of moisture shows that the patches prepared with hydroxypropylmethylcellulose have less tendency to collect water (55.91 %) compared to 67.04 % and 67.30 % with sodium carboxymethylcellulose and chitosan, respectively. Conclusion: The results show that there is compatibility between the components of the formulation and the enthalpy data correlate
Resumo:
Melanoma is one of the most aggressive types of skin cancer and its incidence rate is still increasing. All existing treatments are minimally effective. Consequently, new therapeutic agents for melanoma treatment should be developed. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and anti-metastatic properties. The aim of this study was to evaluate the different signaling pathways involved in the cytotoxic effect of DM-1 on melanoma cells. The apoptotic process and cytoskeletal changes were evaluated by immunoblotting and immunofluorescence, respectively, in melanoma cells. After DM-1 treatment, SK-MEL-5 melanoma cells showed actin filament disorganization with spicule formation throughout the cytoskeleton and significant reduction of focal adhesion as well as they were present only at cell extremities, conferring a poor connection between the cell and the substrate. Besides this, there was significant filopodium retraction and loss of typical cytoskeleton scaffold. These modifications contributed to cell detachment followed by cell death. Furthermore, DM-1-induced apoptosis was triggered by multiple Bcl-2 proteins involved in both the extrinsic and the intrinsic apoptotic pathways. SK-MEL-5 cells showed a death mechanism mainly by Bcl-2/Bax ratio decrease, whereas A375 cells presented apoptosis induction by Mcl-1 and Bcl-xL downregulation. In SK-MEL-5 and A375 melanoma cells, there was a significant increase in the active form of caspase 9, and the inactive form of the effector caspase 3 was decreased in both cell lines. Expression of cleaved poly ADP ribose polymerase was increased after DM-1 treatment in these melanoma cell lines, demonstrating that the apoptotic process occurred. Altogether, these data elucidate the cellular and molecular mechanisms involved in the cytotoxicity induced by the antitumor agent DM-1 in melanoma cells.
Resumo:
The marine alkaloid, Lamellarin D (Lam-D), has shown potent cytotoxicity in numerous cancer cell lines, and was recently identified as a potent topoisomerase I inhibitor. A library of open lactone analogs of Lam-D was prepared from a methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3- carboxylate scaffold (1) by introducing various aryl groups through sequential and regioselective bromination, followed by Pd(0)-catalyzed Suzuki cross-coupling chemistry. The compounds were obtained in a 24-44% overall yield, and tested in a panel of three human tumor cell lines, MDA-MB- 231 (breast), A-549 (lung), and HT-29 (colon), to evaluate their cytotoxic potential. From these data the SAR study concluded that more than 75% of the open-chain Lam-D analogs tested showed cytotoxicity in a low micromolar GI50 range.