57 resultados para Cayley graphs
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: Given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an m-generated group is amenable if and only if the density of the corresponding Cayley graph equals to 2m. We test amenable and non-amenable groups, and also groups for which amenability is unknown. In the latter class we focus on Richard Thompson’s group F.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Counting labelled planar graphs, and typical properties of random labelled planar graphs, have received much attention recently. We start the process here of extending these investigations to graphs embeddable on any fixed surface S. In particular we show that the labelled graphs embeddable on S have the same growth constant as for planar graphs, and the same holds for unlabelled graphs. Also, if we pick a graph uniformly at random from the graphs embeddable on S which have vertex set {1, . . . , n}, then with probability tending to 1 as n → ∞, this random graph either is connected or consists of one giant component together with a few nodes in small planar components.
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the innite d-regular tree. ore recently Sly [8] (see also [1]) showed that this is optimal in the sense that if here is an FPRAS for the hard-core partition function on graphs of maximum egree d for activities larger than the critical activity on the innite d-regular ree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. his in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Degree sequences of some types of graphs will be studied and characterizedin this paper.
Resumo:
In this paper we provide a new method to generate hard k-SAT instances. We incrementally construct a high girth bipartite incidence graph of the k-SAT instance. Having high girth assures high expansion for the graph, and high expansion implies high resolution width. We have extended this approach to generate hard n-ary CSP instances and we have also adapted this idea to increase the expansion of the system of linear equations used to generate XORSAT instances, being able to produce harder satisfiable instances than former generators.
Resumo:
Peer-reviewed
Resumo:
The filling length of an edge-circuit η in the Cayley 2-complex of a finite presentation of a group is the minimal integer length L such that there is a combinatorial null-homotopy of η down to a base point through loops of length at most L. We introduce similar notions in which the full-homotopy is not required to fix a base point, and in which the contracting loop is allowed to bifurcate. We exhibit a group in which the resulting filling invariants exhibit dramatically different behaviour to the standard notion of filling length. We also define the corresponding filling invariants for Riemannian manifolds and translate our results to this setting.
Resumo:
We present a new domain of preferences under which the majority relation is always quasi-transitive and thus Condorcet winners always exist. We model situations where a set of individuals must choose one individual in the group. Agents are connected through some relationship that can be interpreted as expressing neighborhood, and which is formalized by a graph. Our restriction on preferences is as follows: each agent can freely rank his immediate neighbors, but then he is indifferent between each neighbor and all other agents that this neighbor "leads to". Hence, agents can be highly perceptive regarding their neighbors, while being insensitive to the differences between these and other agents which are further removed from them. We show quasi-transitivity of the majority relation when the graph expressing the neighborhood relation is a tree. We also discuss a further restriction allowing to extend the result for more general graphs. Finally, we compare the proposed restriction with others in the literature, to conclude that it is independent of any previously discussed domain restriction.
Resumo:
Let T be the Cayley graph of a finitely generated free group F. Given two vertices in T consider all the walks of a given length between these vertices that at a certain time must follow a number of predetermined steps. We give formulas for the number of such walks by expressing the problem in terms of equations in F and solving the corresponding equations.
Resumo:
In this paper, results known about the artinian and noetherian conditions for the Leavitt path algebras of graphs with finitely many vertices are extended to all row-finite graphs. In our first main result, necessary and sufficient conditions on a row-finite graph E are given so that the corresponding (not necessarily unital) Leavitt path K-algebra L(E) is semisimple. These are precisely the algebras L(E)for which every corner is left (equivalently, right)artinian. They are also precisely the algebras L(E) for which every finitely generated left (equivalently, right) L(E)-module is artinian. In our second main result, we give necessary and sufficient conditions for every corner of L(E) to be left (equivalently, right) noetherian. They also turn out to be precisely those algebras L(E) for which every finitely generated left(equivalently, right) L(E)-module is noetherian. In both situations, isomorphisms between these algebras and appropriate direct sums of matrix rings over K or K[x, x−1] are provided. Likewise, in both situations, equivalent graph theoretic conditions on E are presented.