6 resultados para Catalytic activity
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The degradation of the catalytic filaments is the main factor limiting the industrial implementation of the hot wire chemical vapor deposition (HWCVD) technique. Up to now, no solution has been found to protect the catalytic filaments used in HWCVD without compromising their catalytic activity. Probably, the definitive solution relies on the automatic replacement of the catalytic filaments. In this work, the results of the validation tests of a new apparatus for the automatic replacement of the catalytic filaments are reported. The functionalities of the different parts have been validated using a 0.2 mm diameter tungsten filament under uc-Si:H deposition conditions.
Resumo:
Brain acetylcholinesterase (AChE) forms stable complexes with amyloid-beta peptide (Abeta) during its assembly into filaments, in agreement with its colocalization with the Abeta deposits of Alzheimer's brain. The association of the enzyme with nascent Abeta aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the Abeta aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of Abeta fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
Resumo:
Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.
Resumo:
Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons.
Resumo:
Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.
Resumo:
Cyclin dependent kinases (cdks) regulate cell cycle progression and transcription. We report here that the transcriptional co-activator PCAF directly interacts with cdk2. This interaction is mainly produced during S and G2/M phases of the cell cycle. As a consequence of this association, PCAF inhibits the activity of cyclin/cdk2 complexes. This effect is specific for cdk2 because PCAF does not inhibit either cyclin D3/cdk6 or cyclin B/cdk1 activities. The inhibition is neither competitive with ATP, nor with the substrate histone H1 suggesting that somehow PCAF disturbs cyclin/cdk2 complexes. We also demonstrate that overexpression of PCAF in the cells inhibits cdk2 activity and arrests cell cycle progression at S and G2/M. This blockade is dependent on cdk2 because it is rescued by the simultaneous overexpression of this kinase. Moreover, we also observed that PCAF acetylates cdk2 at lysine 33. As this lysine is essential for the interaction with ATP, acetylation of this residue inhibits cdk2 activity. Thus, we report here that PCAF inhibits cyclin/cdk2 activity by two different mechanisms: (i) by somehow affecting cyclin/cdk2 interaction and (ii) by acetylating K33 at the catalytic pocket of cdk2. These findings identify a previously unknown mechanism that regulates cdk2 activity.