155 resultados para Boolean Functions, Equivalence Class
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
By identifying types whose low-order beliefs up to level li about the state of nature coincide, weobtain quotient type spaces that are typically smaller than the original ones, preserve basic topologicalproperties, and allow standard equilibrium analysis even under bounded reasoning. Our Bayesian Nash(li; l-i)-equilibria capture players inability to distinguish types belonging to the same equivalence class.The case with uncertainty about the vector of levels (li; l-i) is also analyzed. Two examples illustratethe constructions.
Resumo:
We extend Deligne's weight filtration to the integer cohomology of complex analytic spaces (endowed with an equivalence class of compactifications). In general, the weight filtration that we obtain is not part of a mixed Hodge structure. Our purely geometric proof is based on cubical descent for resolution of singularities and Poincaré-Verdier duality. Using similar techniques, we introduce the singularity filtration on the cohomology of compactificable analytic spaces. This is a new and natural analytic invariant which does not depend on the equivalence class of compactifications and is related to the weight filtration.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We prove that the Cuntz semigroup is recovered functorially from the Elliott invariant for a large class of C¤-algebras. In particular, our results apply to the largest class of simple C¤-algebras for which K-theoretic classification can be hoped for. This work has three significant consequences. First, it provides new conceptual insight into Elliott's classification program, proving that the usual form of the Elliott conjecture is equivalent, among Z-stable algebras, to a conjecture which is in general substantially weaker and for which there are no known counterexamples. Second and third, it resolves, for the class of algebras above, two conjectures of Blackadar and Handelman concerning the basic structure of dimension functions on C¤-algebras. We also prove in passing that the Kuntz-Pedersen semigroup is recovered functorially from the Elliott invariant for all simple unital C¤-algebras of interest.
Resumo:
The network revenue management (RM) problem arises in airline, hotel, media,and other industries where the sale products use multiple resources. It can be formulatedas a stochastic dynamic program but the dynamic program is computationallyintractable because of an exponentially large state space, and a number of heuristicshave been proposed to approximate it. Notable amongst these -both for their revenueperformance, as well as their theoretically sound basis- are approximate dynamic programmingmethods that approximate the value function by basis functions (both affinefunctions as well as piecewise-linear functions have been proposed for network RM)and decomposition methods that relax the constraints of the dynamic program to solvesimpler dynamic programs (such as the Lagrangian relaxation methods). In this paperwe show that these two seemingly distinct approaches coincide for the network RMdynamic program, i.e., the piecewise-linear approximation method and the Lagrangianrelaxation method are one and the same.
Resumo:
The aim of this paper is to give an explicit formula for the num- bers of abelian extensions of a p-adic number field and to study the generating function of these numbers. More precisely, we give the number of abelian ex- tensions with given degree and ramification index, and the number of abelian extensions with given degree of any local field of characteristic zero. Moreover, we give a concrete expression of a generating function for these last numbers
Resumo:
A geometrical treatment of the path integral for gauge theories with first-class constraints linear in the momenta is performed. The equivalence of reduced, Polyakov, Faddeev-Popov, and Faddeev path-integral quantization of gauge theories is established. In the process of carrying this out we find a modified version of the original Faddeev-Popov formula which is derived under much more general conditions than the usual one. Throughout this paper we emphasize the fact that we only make use of the information contained in the action for the system, and of the natural geometrical structures derived from it.
Resumo:
The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint systems. A procedure to construct the Lagrangian constraints from the Hamiltonian constraints is given. Those Hamiltonian constraints that are first class with respect to the Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.
Resumo:
L'anàlisi de la densitat urbana és utilitzada per examinar la distribució espacial de la població dins de les àrees urbanes, i és força útil per planificar els serveis públics. En aquest article, s'estudien setze formes funcionals clàssiques de la relació existent entre la densitat i la distancia en la regió metropolitana de Barcelona i els seus onze subcentres.
Resumo:
We prove that any subanalytic locally Lipschitz function has the Sard property. Such functions are typically nonsmooth and their lack of regularity necessitates the choice of some generalized notion of gradient and of critical point. In our framework these notions are defined in terms of the Clarke and of the convex-stable subdifferentials. The main result of this note asserts that for any subanalytic locally Lipschitz function the set of its Clarke critical values is locally finite. The proof relies on Pawlucki's extension of the Puiseuxlemma. In the last section we give an example of a continuous subanalytic function which is not constant on a segment of "broadly critical" points, that is, points for which we can find arbitrarily short convex combinations of gradients at nearby points.
Resumo:
We report on a series of experiments that examine bidding behavior in first-price sealed bid auctions with symmetric and asymmetric bidders. To study the extent of strategic behavior, we use an experimental design that elicits bidders' complete bid functions in each round (auction) of the experiment. In the aggregate, behavior is consistent with the basic equilibrium predictions for risk neutral or homogenous risk averse bidders (extent of bid shading, average seller's revenues and deviations from equilibrium). However, when we look at the extent of best reply behavior and the shape of bid functions, we find that individual behavior is not in line with the received equilibrium models, although it exhibits strategic sophistication.
Resumo:
In microeconomic analysis functions with diminishing returns to scale (DRS) have frequently been employed. Various properties of increasing quasiconcave aggregator functions with DRS are derived. Furthermore duality in the classical sense as well as of a new type is studied for such aggregator functions in production and consumer theory. In particular representation theorems for direct and indirect aggregator functions are obtained. These involve only small sets of generator functions. The study is carried out in the contemporary framework of abstract convexity and abstract concavity.
Resumo:
In this paper we propose the infimum of the Arrow-Pratt index of absolute risk aversion as a measure of global risk aversion of a utility function. We then show that, for any given arbitrary pair of distributions, there exists a threshold level of global risk aversion such that all increasing concave utility functions with at least as much global risk aversion would rank the two distributions in the same way. Furthermore, this threshold level is sharp in the sense that, for any lower level of global risk aversion, we can find two utility functions in this class yielding opposite preference relations for the two distributions.