163 resultados para Bilevel programming problem
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Large projects evaluation rises well known difficulties because -by definition- they modify the current price system; their public evaluation presents additional difficulties because they modify too existing shadow prices without the project. This paper analyzes -first- the basic methodologies applied until late 80s., based on the integration of projects in optimization models or, alternatively, based on iterative procedures with information exchange between two organizational levels. New methodologies applied afterwards are based on variational inequalities, bilevel programming and linear or nonlinear complementarity. Their foundations and different applications related with project evaluation are explored. As a matter of fact, these new tools are closely related among them and can treat more complex cases involving -for example- the reaction of agents to policies or the existence of multiple agents in an environment characterized by common functions representing demands or constraints on polluting emissions.
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
We show that incentive efficient allocations in economies with adverse selection and moral hazard can be determined as optimal solutions to a linear programming problem and we use duality theory to obtain a complete characterization of the optima. Our dual analysis identifies welfare effects associated with the incentives of the agents to truthfully reveal their private information. Because these welfare effects may generate non-convexities, incentive efficient allocations may involve randomization. Other properties of incentive efficient allocations are also derived.
Resumo:
The Network Revenue Management problem can be formulated as a stochastic dynamic programming problem (DP or the\optimal" solution V *) whose exact solution is computationally intractable. Consequently, a number of heuristics have been proposed in the literature, the most popular of which are the deterministic linear programming (DLP) model, and a simulation based method, the randomized linear programming (RLP) model. Both methods give upper bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used to provide control values that can be used in practice to make accept/deny decisions for booking requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds, the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as it appears from empirical studies and practical experience that models that give tighter bounds also lead to better controls (better in the sense that they lead to more revenue). In this paper we give tightened versions of three bounds, calling themsAR (strong Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations between them. Speciffically, we show that the sPHLP bound is tighter than sLR bound and sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic programming.
Resumo:
Business processes designers take into account the resources that the processes would need, but, due to the variable cost of certain parameters (like energy) or other circumstances, this scheduling must be done when business process enactment. In this report we formalize the energy aware resource cost, including time and usage dependent rates. We also present a constraint programming approach and an auction-based approach to solve the mentioned problem including a comparison of them and a comparison of the proposed algorithms for solving them
Resumo:
In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
The choice network revenue management model incorporates customer purchase behavioras a function of the offered products, and is the appropriate model for airline and hotel networkrevenue management, dynamic sales of bundles, and dynamic assortment optimization.The optimization problem is a stochastic dynamic program and is intractable. A certainty-equivalencerelaxation of the dynamic program, called the choice deterministic linear program(CDLP) is usually used to generate dyamic controls. Recently, a compact linear programmingformulation of this linear program was given for the multi-segment multinomial-logit (MNL)model of customer choice with non-overlapping consideration sets. Our objective is to obtaina tighter bound than this formulation while retaining the appealing properties of a compactlinear programming representation. To this end, it is natural to consider the affine relaxationof the dynamic program. We first show that the affine relaxation is NP-complete even for asingle-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a newcompact linear program that approximates the dynamic programming value function betterthan CDLP, provably between the CDLP value and the affine relaxation, and often comingclose to the latter in our numerical experiments. When the segment consideration sets overlap,we show that some strong equalities called product cuts developed for the CDLP remain validfor our new formulation. Finally we perform extensive numerical comparisons on the variousbounds to evaluate their performance.
Resumo:
We present a new unifying framework for investigating throughput-WIP(Work-in-Process) optimal control problems in queueing systems,based on reformulating them as linear programming (LP) problems withspecial structure: We show that if a throughput-WIP performance pairin a stochastic system satisfies the Threshold Property we introducein this paper, then we can reformulate the problem of optimizing alinear objective of throughput-WIP performance as a (semi-infinite)LP problem over a polygon with special structure (a thresholdpolygon). The strong structural properties of such polygones explainthe optimality of threshold policies for optimizing linearperformance objectives: their vertices correspond to the performancepairs of threshold policies. We analyze in this framework theversatile input-output queueing intensity control model introduced byChen and Yao (1990), obtaining a variety of new results, including (a)an exact reformulation of the control problem as an LP problem over athreshold polygon; (b) an analytical characterization of the Min WIPfunction (giving the minimum WIP level required to attain a targetthroughput level); (c) an LP Value Decomposition Theorem that relatesthe objective value under an arbitrary policy with that of a giventhreshold policy (thus revealing the LP interpretation of Chen andYao's optimality conditions); (d) diminishing returns and invarianceproperties of throughput-WIP performance, which underlie thresholdoptimality; (e) a unified treatment of the time-discounted andtime-average cases.
Resumo:
This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.
Resumo:
We present new metaheuristics for solving real crew scheduling problemsin a public transportation bus company. Since the crews of thesecompanies are drivers, we will designate the problem by the bus-driverscheduling problem. Crew scheduling problems are well known and severalmathematical programming based techniques have been proposed to solvethem, in particular using the set-covering formulation. However, inpractice, there exists the need for improvement in terms of computationalefficiency and capacity of solving large-scale instances. Moreover, thereal bus-driver scheduling problems that we consider can present variantaspects of the set covering, as for example a different objectivefunction, implying that alternative solutions methods have to bedeveloped. We propose metaheuristics based on the following approaches:GRASP (greedy randomized adaptive search procedure), tabu search andgenetic algorithms. These metaheuristics also present some innovationfeatures based on and genetic algorithms. These metaheuristics alsopresent some innovation features based on the structure of the crewscheduling problem, that guide the search efficiently and able them tofind good solutions. Some of these new features can also be applied inthe development of heuristics to other combinatorial optimizationproblems. A summary of computational results with real-data problems ispresented.
Resumo:
Peer-reviewed
Resumo:
It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.
Resumo:
Using the continuation method we prove that the circular and the elliptic symmetric periodic orbits of the planar rotating Kepler problem can be continued into periodic orbits of the planar collision restricted 3–body problem. Additionally, we also continue to this restricted problem the so called “comets orbits”.