80 resultados para Automatic Speech Recognition

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

90.00% 90.00%

Publicador:

Resumo:

En aquest projecte es fa una introducció als reconeixedors de la parla, el seu funcionament i la seva base matemàtica. Un cop tots els conceptes han quedat clars, es mostra el mètode de creació que hem seguit per obtenir el nostre propi reconeixedor de la parla, utilitzant les eines HTK, en català. S’avaluen les seves virtuts i els seus defectes a través de diferents proves realitzades als seus components. A més a més, el projecte arrodoneix la feina implementant un sistema de dictat automàtic que explota el reconeixedor de la parla utilitzant Julius.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As part of the Affective Computing research field, the development of automatic affective recognition systems can enhance human-computer interactions by allowing the creation of interfaces that react to the user's emotional state. To that end, this Master Thesis brings affect recognition to nowadays most used human computer interface, mobile devices, by developing a facial expression recognition system able to perform detection under the difficult conditions of viewing angle and illumination that entails the interaction with a mobile device. Moreover, this Master Thesis proposes to combine emotional features detected from expression with contextual information of the current situation, to infer a complex and extensive emotional state of the user. Thus, a cognitive computational model of emotion is defined that provides a multicomponential affective state of the user through the integration of the detected emotional features into appraisal processes. In order to account for individual differences in the emotional experience, these processes can be adapted to the culture and personality of the user.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Informe de investigación realizado a partir de una estancia en el Équipe de Recherche en Syntaxe et Sémantique de la Université de Toulouse-Le Mirail, Francia, entre julio y setiembre de 2006. En la actualidad existen diversos diccionarios de siglas en línea. Entre ellos sobresalen Acronym Finder, Abbreviations.com y Acronyma; todos ellos dedicados mayoritariamente a las siglas inglesas. Al igual que los diccionarios en papel, este tipo de diccionarios presenta problemas de desactualización por la gran cantidad de siglas que se crean a diario. Por ejemplo, en 2001, un estudio de Pustejovsky et al. mostraba que en los abstracts de Medline aparecían mensualmente cerca de 12.000 nuevas siglas. El mecanismo de actualización empleado por estos recursos es la remisión de nuevas siglas por parte de los usuarios. Sin embargo, esta técnica tiene la desventaja de que la edición de la información es muy lenta y costosa. Un ejemplo de ello es el caso de Abbreviations.com que en octubre de 2006 tenía alrededor de 100.000 siglas pendientes de edición e incorporación definitiva. Como solución a este tipo de problema, se plantea el diseño de sistemas de detección y extracción automática de siglas a partir de corpus. El proceso de detección comporta dos pasos; el primero, consiste en la identificación de las siglas dentro de un corpus y, el segundo, la desambiguación, es decir, la selección de la forma desarrollada apropiada de una sigla en un contexto dado. En la actualidad, los sistemas de detección de siglas emplean métodos basados en patrones, estadística, aprendizaje máquina, o combinaciones de ellos. En este estudio se analizan los principales sistemas de detección y desambiguación de siglas y los métodos que emplean. Cada uno se evalúa desde el punto de vista del rendimiento, medido en términos de precisión (porcentaje de siglas correctas con respecto al número total de siglas extraídas por el sistema) y exhaustividad (porcentaje de siglas correctas identificadas por el sistema con respecto al número total de siglas existente en el corpus). Como resultado, se presentan los criterios para el diseño de un futuro sistema de detección de siglas en español.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La interacció home-màquina per mitjà de la veu cobreix moltes àrees d’investigació. Es destaquen entre altres, el reconeixement de la parla, la síntesis i identificació de discurs, la verificació i identificació de locutor i l’activació per veu (ordres) de sistemes robòtics. Reconèixer la parla és natural i simple per a les persones, però és un treball complex per a les màquines, pel qual existeixen diverses metodologies i tècniques, entre elles les Xarxes Neuronals. L’objectiu d’aquest treball és desenvolupar una eina en Matlab per al reconeixement i identificació de paraules pronunciades per un locutor, entre un conjunt de paraules possibles, i amb una bona fiabilitat dins d’uns marges preestablerts. El sistema és independent del locutor que pronuncia la paraula, és a dir, aquest locutor no haurà intervingut en el procés d’entrenament del sistema. S’ha dissenyat una interfície que permet l’adquisició del senyal de veu i el seu processament mitjançant xarxes neuronals i altres tècniques. Adaptant una part de control al sistema, es podria utilitzar per donar ordres a un robot com l’Alfa6Uvic o qualsevol altre dispositiu.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La interacció home-màquina per mitjà de la veu cobreix moltes àrees d’investigació. Es destaquen entre altres, el reconeixement de la parla, la síntesis i identificació de discurs, la verificació i identificació de locutor i l’activació per veu (ordres) de sistemes robòtics. Reconèixer la parla és natural i simple per a les persones, però és un treball complex per a les màquines, pel qual existeixen diverses metodologies i tècniques, entre elles les Xarxes Neuronals. L’objectiu d’aquest treball és desenvolupar una eina en Matlab per al reconeixement i identificació de paraules pronunciades per un locutor, entre un conjunt de paraules possibles, i amb una bona fiabilitat dins d’uns marges preestablerts. El sistema és independent del locutor que pronuncia la paraula, és a dir, aquest locutor no haurà intervingut en el procés d’entrenament del sistema. S’ha dissenyat una interfície que permet l’adquisició del senyal de veu i el seu processament mitjançant xarxes neuronals i altres tècniques. Adaptant una part de control al sistema, es podria utilitzar per donar ordres a un robot com l’Alfa6Uvic o qualsevol altre dispositiu.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to im-provement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to improvement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The automatic interpretation of conventional traffic signs is very complex and time consuming. The paper concerns an automatic warning system for driving assistance. It does not interpret the standard traffic signs on the roadside; the proposal is to incorporate into the existing signs another type of traffic sign whose information will be more easily interpreted by a processor. The type of information to be added is profuse and therefore the most important object is the robustness of the system. The basic proposal of this new philosophy is that the co-pilot system for automatic warning and driving assistance can interpret with greater ease the information contained in the new sign, whilst the human driver only has to interpret the "classic" sign. One of the codings that has been tested with good results and which seems to us easy to implement is that which has a rectangular shape and 4 vertical bars of different colours. The size of these signs is equivalent to the size of the conventional signs (approximately 0.4 m2). The colour information from the sign can be easily interpreted by the proposed processor and the interpretation is much easier and quicker than the information shown by the pictographs of the classic signs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Single Nucleotide Polymorphisms, among other type of sequence variants, constitute key elements in genetic epidemiology and pharmacogenomics. While sequence data about genetic variation is found at databases such as dbSNP, clues about the functional and phenotypic consequences of the variations are generally found in biomedical literature. The identification of the relevant documents and the extraction of the information from them are hampered by the large size of literature databases and the lack of widely accepted standard notation for biomedical entities. Thus, automatic systems for the identification of citations of allelic variants of genes in biomedical texts are required. Results: Our group has previously reported the development of OSIRIS, a system aimed at the retrieval of literature about allelic variants of genes http://ibi.imim.es/osirisform.html. Here we describe the development of a new version of OSIRIS (OSIRISv1.2, http://ibi.imim.es/OSIRISv1.2.html webcite) which incorporates a new entity recognition module and is built on top of a local mirror of the MEDLINE collection and HgenetInfoDB: a database that collects data on human gene sequence variations. The new entity recognition module is based on a pattern-based search algorithm for the identification of variation terms in the texts and their mapping to dbSNP identifiers. The performance of OSIRISv1.2 was evaluated on a manually annotated corpus, resulting in 99% precision, 82% recall, and an F-score of 0.89. As an example, the application of the system for collecting literature citations for the allelic variants of genes related to the diseases intracranial aneurysm and breast cancer is presented. Conclusion: OSIRISv1.2 can be used to link literature references to dbSNP database entries with high accuracy, and therefore is suitable for collecting current knowledge on gene sequence variations and supporting the functional annotation of variation databases. The application of OSIRISv1.2 in combination with controlled vocabularies like MeSH provides a way to identify associations of biomedical interest, such as those that relate SNPs with diseases.