29 resultados para Artificial satellites in navigation.
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Proyecto Fin de Carrera del Área de Redes de Computadores de la titulación de Ingeniería Informática. El proyecto versa sobre el desarrollo de un sistema automático de descarga, distribución de datos y transformación de datos de boyas con el sistema ARGOS, así como una aplicación móvil para el sistema operativo móvil iOS, para su uso en dispositivos móviles iPhone.
Resumo:
This paper addresses the estimation of the code-phase(pseudorange) and the carrier-phase of the direct signal received from a direct-sequence spread-spectrum satellite transmitter. Thesignal is received by an antenna array in a scenario with interferenceand multipath propagation. These two effects are generallythe limiting error sources in most high-precision positioning applications.A new estimator of the code- and carrier-phases is derivedby using a simplified signal model and the maximum likelihood(ML) principle. The simplified model consists essentially ofgathering all signals, except for the direct one, in a component withunknown spatial correlation. The estimator exploits the knowledgeof the direction-of-arrival of the direct signal and is much simplerthan other estimators derived under more detailed signal models.Moreover, we present an iterative algorithm, that is adequate for apractical implementation and explores an interesting link betweenthe ML estimator and a hybrid beamformer. The mean squarederror and bias of the new estimator are computed for a numberof scenarios and compared with those of other methods. The presentedestimator and the hybrid beamforming outperform the existingtechniques of comparable complexity and attains, in manysituations, the Cramér–Rao lower bound of the problem at hand.
Resumo:
This paper proposes an heuristic for the scheduling of capacity requests and the periodic assignment of radio resources in geostationary (GEO) satellite networks with star topology, using the Demand Assigned Multiple Access (DAMA) protocol in the link layer, and Multi-Frequency Time Division Multiple Access (MF-TDMA) and Adaptive Coding and Modulation (ACM) in the physical layer.
Resumo:
The magnetoresistance across interfaces in the itinerant ferromagnetic oxide SrRuO3 have been studied. To define appropriately the interfaces, epitaxial thin films have been grown on bicrystalline and laser-patterned SrTiO3 substrates. Comparison is made with results obtained on similar experiments using the double-exchange ferromagnetic oxide La2/3Sr1/3MnO3. It is found that in SrRuO3, interfaces induce a substantial negative magnetoresistance, although no traces of the low-field spin tunneling magnetoresistance are found. We discuss these results on the basis of the distinct degree of spin polarization in ruthenates and manganites and the different nature of the surface magnetic layer formed at interfaces.
Resumo:
Artificial reefs have barely been used in Neotropical reservoirs (about five studies in three reservoirs), despite their potential as a fishery management tool to create new habitats and also to understand fish ecology. We experimentally assessed how reef material (ceramic, concrete, and PVC) and time modulated fish colonization of artificial reefs deployed in Itaipu Reservoir, a large reservoir of the mainstem Parana´ River, Brazil. Fish richness, abundance, and biomass were significantly greater in the reef treatments than at control sites. Among the experimental reefs, ceramic followed by the concrete treatments were the materials most effectively colonized, harboring the majority of the 13 fish species recorded. Although dependent on material type, many of the regularities of ecological successions were also observed in the artificial reefs, including decelerating increases in species richness, abundance, mean individual size, and species loss rates with time and decelerating decreases of species gain and turnover rates. Species composition also varied with material type and time, together with suites of life history traits: more equilibrium species (i.e., fishes of intermediate size that often exhibit parental care and produce fewer but larger offspring) of the Winemiller-Rose model of fish life histories prevailed in later successional stages. Overall, our study suggests that experimental reefs are a promising tool to understand ecological succession of fish assemblages, particularly in tropical ecosystems given their high species richness and low seasonality
Resumo:
Report for the scientific sojourn at the German Aerospace Center (DLR) , Germany, during June and July 2006. The main objective of the two months stay has been to apply the techniques of LEO (Low Earth Orbiters) satellites GPS navigation which DLR currently uses in real time navigation. These techniques comprise the use of a dynamical model which takes into account the precise earth gravity field and models to account for the effects which perturb the LEO’s motion (such as drag forces due to earth’s atmosphere, solar pressure, due to the solar radiation impacting on the spacecraft, luni-solar gravity, due to the perturbation of the gravity field for the sun and moon attraction, and tidal forces, due to the ocean and solid tides). A high parameterized software was produced in the first part of work, which has been used to asses which accuracy could be reached exploring different models and complexities. The objective was to study the accuracy vs complexity, taking into account that LEOs at different heights have different behaviors. In this frame, several LEOs have been selected in a wide range of altitudes, and several approaches with different complexity have been chosen. Complexity is a very important issue, because processors onboard spacecrafts have very limited computing and memory resources, so it is mandatory to keep the algorithms simple enough to let the satellite process it by itself.
Resumo:
Treball de recerca realitzat per una alumna d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. L’albedo lunar i els satèl•lits és un treball que relaciona l’enginyeria aeroespacial amb l’astronomia. El seu objectiu principal investigar si l’albedo lunar, els rajos de sol reflectits a la superfície lunar, pot modificar significativament la temperatura de les plaques solars d’un satèl•lit artificial que orbiti la Lluna i, en conseqüència, afectar-ne el rendiment. El segon objectiu del treball és calcular si seria possible fer un mapa d’albedo lunar, a partir de la temperatura d’un satèl•lit en òrbita al voltant de la Lluna, que permetria conèixer amb més precisió la composició de la superfície lunar. Després d’adquirir els fonaments teòrics necessaris per a realitzar el treball, del procés per a trobar la manera de dur a terme els càlculs i d’efectuar els càlculs en si, les conclusions del treball són que l’albedo lunar causa un augment de temperatura en els satèl•lits prou significatiu per afectar-ne el rendiment; i que amb les temperatures enregistrades per un satèl•lit en òrbita al voltant de la Lluna es podria crear un mapa d’albedo. Aquesta recerca ha estat feta per suggeriment i sota la supervisió del CTAE (Centre de Tecnologia Aeroespacial) per analitzar si els resultats són aplicables al satèl•lit que s’enviarà a la Lluna, Lunar Mission BW1.
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.
Resumo:
In this letter, we obtain the Maximum LikelihoodEstimator of position in the framework of Global NavigationSatellite Systems. This theoretical result is the basis of a completelydifferent approach to the positioning problem, in contrastto the conventional two-steps position estimation, consistingof estimating the synchronization parameters of the in-viewsatellites and then performing a position estimation with thatinformation. To the authors’ knowledge, this is a novel approachwhich copes with signal fading and it mitigates multipath andjamming interferences. Besides, the concept of Position–basedSynchronization is introduced, which states that synchronizationparameters can be recovered from a user position estimation. Weprovide computer simulation results showing the robustness ofthe proposed approach in fading multipath channels. The RootMean Square Error performance of the proposed algorithm iscompared to those achieved with state-of-the-art synchronizationtechniques. A Sequential Monte–Carlo based method is used todeal with the multivariate optimization problem resulting fromthe ML solution in an iterative way.
Resumo:
[ANGLÈS] This project introduces GNSS-SDR, an open source Global Navigation Satellite System software-defined receiver. The lack of reconfigurability of current commercial-of-the-shelf receivers and the advent of new radionavigation signals and systems make software receivers an appealing approach to design new architectures and signal processing algorithms. With the aim of exploring the full potential of this forthcoming scenario with a plurality of new signal structures and frequency bands available for positioning, this paper describes the software architecture design and provides details about its implementation, targeting a multiband, multisystem GNSS receiver. The result is a testbed for GNSS signal processing that allows any kind of customization, including interchangeability of signal sources, signal processing algorithms, interoperability with other systems, output formats, and the offering of interfaces to all the intermediate signals, parameters and variables. The source code release under the GNU General Public License (GPL) secures practical usability, inspection, and continuous improvement by the research community, allowing the discussion based on tangible code and the analysis of results obtained with real signals. The source code is complemented by a development ecosystem, consisting of a website (http://gnss-sdr.org), as well as a revision control system, instructions for users and developers, and communication tools. The project shows in detail the design of the initial blocks of the Signal Processing Plane of the receiver: signal conditioner, the acquisition block and the receiver channel, the project also extends the functionality of the acquisition and tracking modules of the GNSS-SDR receiver to track the new Galileo E1 signals available. Each section provides a theoretical analysis, implementation details of each block and subsequent testing to confirm the calculations with both synthetically generated signals and with real signals from satellites in space.
Resumo:
Spatial resolution is a key parameter of all remote sensing satellites and platforms. The nominal spatial resolution of satellites is a well-known characteristic because it is directly related to the area in ground that represents a pixel in the detector. Nevertheless, in practice, the actual resolution of a specific image obtained from a satellite is difficult to know precisely because it depends on many other factors such as atmospheric conditions. However, if one has two or more images of the same region, it is possible to compare their relative resolutions. In this paper, a wavelet-decomposition-based method for the determination of the relative resolution between two remotely sensed images of the same area is proposed. The method can be applied to panchromatic, multispectral, and mixed (one panchromatic and one multispectral) images. As an example, the method was applied to compute the relative resolution between SPOT-3, Landsat-5, and Landsat-7 panchromatic and multispectral images taken under similar as well as under very different conditions. On the other hand, if the true absolute resolution of one of the images of the pair is known, the resolution of the other can be computed. Thus, in the last part of this paper, a spatial calibrator that is designed and constructed to help compute the absolute resolution of a single remotely sensed image is described, and an example of its use is presented.
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.