75 resultados para Antibacterial agents
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
En el presente trabajo se valora la eficacia antibacteriana del colutorio Tantum verde® y la de su, presuntamente, único principio activo, la bencidamina clorhidrato. Para ello, se ensayó la actividad in vitro de la bencidamina HCl y del Tantum verde mediante la obtención de las correspondientes CMI (Concentración Mínima Inhibitoria) siguiendo la técnica de la dilución en medio sólido. Inicialmente, se estudiaron ocho cepas de uso común en el laboratorio y, posteriormente, el estudio fue ampliado a cepas de patógenos bucales aisladas de muestras clínicas. Los estudios realizados, demuestran una eficacia bactericida real frente a patógenos bucales pertenecientes a géneros tales como Actinomyces, Bacillus, Actinobacillus, Veillonella o Streptococcus. Además, el Tantum verde como colutorio posee, en general, una mayor actividad antibacteriana que la demostrada por su principal principio activo, la bencidamina HCl, por lo que cabe pensar que la presencia de etanol a baja concentración, en su composición contribuye de forma notable a la acción antibacteriana.
Resumo:
The aim of this study was to develop and validate an analytical method to simultaneously determine European Union-regulated beta-lactams (penicillins and cephalosporins) and quinolones in cow milk. The procedure involves a new solid phase extraction (SPE) to clean-up and pre-concentrate the three series of antibiotics before analysis by liquid chromatography¿tandem mass spectrometry (LC-MS/MS) and ultra-high-performance liquid chromatography¿tandem mass spectrometry (UPLC-MS/MS). LC-MS/MS and UPLC-MS/MS techniques were also compared. The method was validated according to the Directive 2002/657/EC and subsequently applied to 56 samples of raw cow milk supplied by the Laboratori Interprofessional Lleter de Catalunya (ALLIC) (Laboratori Interprofessional Lleter de Catalunya, Control Laboratory Interprofessional of Milk of Catalunya).
Resumo:
The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.
Resumo:
An enantioselective approach to (-)-isoavenaciolide was achieved starting from 1- undecyn-3-ol. The synthesis relied upon the preparation of a chiral 4-silyloxy-2-alkenylborane by hydroboration of a protected 2,3-allenol and subsequent stereoselective addition to 2- thiophenecarboxaldehyde
Resumo:
The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.
Resumo:
The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.
Resumo:
The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent
Resumo:
The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent
Resumo:
Empirical antibiotic therapy of community-acquired pneumonia (CAP) has been complicated by the worldwide emergence of penicillin resistance among Streptococcus pneumoniae. The impact of this resistance on the outcome of patients hospitalized for CAP, empirically treated with betalactams, has not been evaluated in a randomized study. We conducted a prospective, randomized trial to assess the efficacy of amoxicillin-clavulanate (2 g/200 mg/8 hr) and ceftriaxone (1 g/24 hr) in a cohort of patients hospitalized for moderate-to-severe CAP. Three-hundred seventy-eight patients were randomized to receive amoxicillin-clavulanate (184 patients) or ceftriaxone (194 patients). Efficacy was assessed on Day 2, after completion of therapy and at long term follow-up. There were no significant differences in outcomes between treatment groups, both in intention-to-treat and per-protocol analysis. Overall mortality was 10.3% for amoxicillin-clavulanate and 8.8% for ceftriaxone (NS). There were 116 evaluable patients with proven pneumococcal pneumonia. Rates of high-level penicillin resistance (MIC of penicillin ≥2 µg/mL) were similar in the two groups (8.2 and 10.2%). Clinical efficacy at the end of therapy was 90.6% for amoxicillin-clavulanate and 88.9% for ceftriaxone (95% C.I. of the difference: -9.3 to +12.7%). No differences in outcomes were attributable to differences in penicillin susceptibility of pneumococcal strains. Sequential i.v./oral amoxicillin-clavulanate and parenteral ceftriaxone were equally safe and effective for the empirical treatment of acute bacterial pneumonia, including penicillin and cephalosporin-resistant pneumococcal pneumonia. The use of appropriate betalactams in patients with penumococcal pneumonia and in the overall CAP population, is reliable at the current level of resistance
Resumo:
Over the past three decades, penicillin-resistant pneumococci have emerged worldwide. In addition, penicillin-resistant strains have also decreased susceptibility to other β-lactams (including cephalosporins) and these strains are often resistant to other antibiotic groups, making the treatment options much more difficult. Nevertheless, the present in vitro definitions of resistance to penicillin and cephalosporins in pneumococci could not be appropriated for all types of pneumococcal infections. Thus, current levels of resistance to penicillin and cephalosporin seem to have little, if any, clinical relevance in nonmeningeal infections (e.g., pneumonia or bacteremia). On the contrary, numerous clinical failures have been reported in patients with pneumococcal meningitis caused by strains with MICs ≥ 0.12 μg/ml, and penicillin should never be used in pneumococcal meningitis except when the strain is known to be fully susceptible to this drug. Today, therapy for pneumococcal meningitis should mainly be selected on the basis of susceptibility to cephalosporins, and most patients may currently be treated with high-dose cefotaxime (±) vancomycin, depending on the levels of resistance in the patient's geographic area. In this review, we present a practical approach, based on current levels of antibiotic resistance, for treating the most prevalent pneumococcal infections. However, it should be emphasized that the most appropriate antibiotic therapy for infections caused by resistant pneumococci remains controversial, and comparative, randomized studies are urgently needed to clarify the best antibiotic therapy for these infections
Resumo:
The aim of this work is to optimize and validate methods for the multiresidue determination of series of families of antibiotics as quinolones, penicillins and cephalosporins included in European regulation in food samples using LC-MS/MS. Different extraction techniques and clean-up applied to antibiotics in meat were compared. The quality parameters were established according with EU guideline. The developed method was applied to 49 positive raw milk samples from animal medicated with different antibiotics; the 63% of the analyzed samples were found to be compliant. ___________________________________________________________________________________________
Resumo:
In this work methods for the multiresidue determination of the series of quinolones include in the European regulation in food of animal origin are de veloped and validated in line with Commission Decision 2002/657/EC in terms of linearity, decision limit, capability detection, precision and stability. Mult iresidue methods were established to allow the determination of quinolones covered by EU legislation in 2377/90/EC in muscle of chicken, turkey, pig and cow, plasma of cow and pig, liver of pig and milk of cow. First an extraction step was optimized and a SPE step was applied to clean!up and preconcentrate quinolones prior to their separation by CE or LC and determination by CE!UV, LC!UV, LC!Fl, LC!MS with different ion sources (ESI ,ApCI) and different mass analyser (Q, ToF) and LC!E SI!QqQ tandem mass spectrometry. The limits of quantification obtained are always lower than Maxim um Residue Limit (MRL) established by EU for quinolones in animal products and they can be applied to the control of quinolones in foodstuffs of animal origin . Finally the proposed methods were applied to determine quinolones in samples of turkey and pig muscle, pig plasma and milk of cow. Excellent quality parameters and reduced time of analysis were obtained when LC!ESI!MS/MS is used, although the others techniques presented too satisfactory results.
Resumo:
In recent years, the emergence of Staphylococcus aureus strains with reduced susceptibility to glycopeptides has raised considerable concern. We studied the efficacy of vancomycin and teicoplanin, as well as cloxacillin and cefotaxime, against the infection caused by four S. aureus strains with different glycopeptide and β-lactam susceptibilities (strains A, B, C, and D; MICs for vancomycin of 1, 2, 4, and 8 µg/ml respectively), using a modified model of mouse peritonitis. This optimized model appeared to be straightforward and reproducible, and was able to detect low differences in bacterial killing between antibiotics and also between different S. aureus strains. Bactericidal activities in peritoneal fluid for vancomycin, teicoplanin, cloxacillin, and cefotaxime decreased from -2.98, -2.36, -3.22, and -3.57 log10 cfu/ml, respectively, in infection by strain A (MICs for vancomycin and cloxacillin of 1 and 0.38 µg/ml, respectively) to -1.22, -0.65, -1.04, and +0.24 in peritonitis due to strain D (MICs for vancomycin and cloxacillin of 8 and 1,024 µg/ml). Our data confirm the superiority of β-lactams against methicillin-susceptible S. aureus and show that bactericidal activity of glycopeptides decreases significantly with slight increases in MICs; this finding suggests a reduced efficacy of glycopeptides in the treatment of serious glycopeptide-intermediate S. aureus infections
Resumo:
In recent years, the emergence of Staphylococcus aureus strains with reduced susceptibility to glycopeptides has raised considerable concern. We studied the efficacy of vancomycin and teicoplanin, as well as cloxacillin and cefotaxime, against the infection caused by four S. aureus strains with different glycopeptide and β-lactam susceptibilities (strains A, B, C, and D; MICs for vancomycin of 1, 2, 4, and 8 µg/ml respectively), using a modified model of mouse peritonitis. This optimized model appeared to be straightforward and reproducible, and was able to detect low differences in bacterial killing between antibiotics and also between different S. aureus strains. Bactericidal activities in peritoneal fluid for vancomycin, teicoplanin, cloxacillin, and cefotaxime decreased from -2.98, -2.36, -3.22, and -3.57 log10 cfu/ml, respectively, in infection by strain A (MICs for vancomycin and cloxacillin of 1 and 0.38 µg/ml, respectively) to -1.22, -0.65, -1.04, and +0.24 in peritonitis due to strain D (MICs for vancomycin and cloxacillin of 8 and 1,024 µg/ml). Our data confirm the superiority of β-lactams against methicillin-susceptible S. aureus and show that bactericidal activity of glycopeptides decreases significantly with slight increases in MICs; this finding suggests a reduced efficacy of glycopeptides in the treatment of serious glycopeptide-intermediate S. aureus infections
Resumo:
An enantioselective approach to (-)-isoavenaciolide was achieved starting from 1- undecyn-3-ol. The synthesis relied upon the preparation of a chiral 4-silyloxy-2-alkenylborane by hydroboration of a protected 2,3-allenol and subsequent stereoselective addition to 2- thiophenecarboxaldehyde