9 resultados para Amostragem de Gibbs
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A simple expression for the Gibbs free energy of formation of a pure component or a eutectic alloy glass, relative to the stable crystalline phase (or phases) at the same temperature is deduced by use of thermodynamic arguments. The expression obtained is supposed to apply to both monocomponent and multicomponent liquid alloys that might become glasses from the supercooled liquid state, irrespective of the critical cooling rate needed to avoid crystallization.
Resumo:
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the innite d-regular tree. ore recently Sly [8] (see also [1]) showed that this is optimal in the sense that if here is an FPRAS for the hard-core partition function on graphs of maximum egree d for activities larger than the critical activity on the innite d-regular ree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. his in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.
Resumo:
We have studied the growth of interfaces in driven diffusive systems well below the critical temperature by means of Monte Carlo simulations. We consider the region beyond the linear regime and of large values of the external field which has not been explored before. The simulations support the existence of interfacial traveling waves when asymmetry is introduced in the model, a result previously predicted by a linear-stability analysis. Furthermore, the generalization of the Gibbs-Thomson relation is discussed. The results provide evidence that the external field is a stabilizing effect which can be considered as effectively increasing the surface tension.
Resumo:
Within the Tsallis thermodynamics framework, and using scaling properties of the entropy, we derive a generalization of the Gibbs-Duhem equation. The analysis suggests a transformation of variables that allows standard thermodynamics to be recovered. Moreover, we also generalize Einsteins formula for the probability of a fluctuation to occur by means of the maximum statistical entropy method. The use of the proposed transformation of variables also shows that fluctuations within Tsallis statistics can be mapped to those of standard statistical mechanics.
Resumo:
We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.
Resumo:
In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
Resumo:
The specific heat, cp, of two amorphous silicon (a-Si) samples has been measured by differential scanning calorimetry in the 100–900K temperature range. When the hydrogen content is reduced by thermal annealing, cp approaches the value of crystalline Si (c-Si). Within experimental accuracy, we conclude that cp of relaxed pure a-Si coincides with that of c-Si. This result is used to determine the enthalpy, entropy, and Gibbs free energy of defect-free relaxed a-Si. Finally, the contribution of structural defects on these quantities is calculated and the melting point of several states of a-Si is predicted