147 resultados para Aggregate Programming Spatial Computing Scafi Alchemist
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Duro and Esteban (1998) proposed an additive decomposition of Theil populationweighted index by four income multiplicative factors (in spatial contexts). This note makes some additional methodological points: first, it argues that interaction effects are taken into account in the factoral indexes although only in a fairly restrictive way. As a consequence, we suggest to rewrite the decomposition formula as a sum of strict Theil indexes plus the interactive terms; second, it might be instructive to aggregate some of the initial factors; third, this decomposition can be immediately extended to the between- and within-group components.
Resumo:
What explains the spatial distribution of wages across US counties? I find that two of the most important factors are spatial technology diffusion and externalities due to the aggregate scale of production. One empirical finding supporting the importance of spatial technology diffusion is that average wages in a county decrease with the average level of schooling in neighboring counties when employment in the county and average wages in neighboring counties are held constant. All empirical results are obtained using anovel instrument for (endogenous) employment at the county-leveland take into account other factors (e.g. productivity-differencesacross states, climate) that may determine wages.
Resumo:
Statistical computing when input/output is driven by a Graphical User Interface is considered. A proposal is made for automatic control ofcomputational flow to ensure that only strictly required computationsare actually carried on. The computational flow is modeled by a directed graph for implementation in any object-oriented programming language with symbolic manipulation capabilities. A complete implementation example is presented to compute and display frequency based piecewise linear density estimators such as histograms or frequency polygons.
Resumo:
This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
Remote sensing spatial, spectral, and temporal resolutions of images, acquired over a reasonably sized image extent, result in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is very attractive for monitoring, management, and scienti c activities. With Moore's Law alive and well, more and more parallelism is introduced into all computing platforms, at all levels of integration and programming to achieve higher performance and energy e ciency. Being the geometric calibration process one of the most time consuming processes when using remote sensing images, the aim of this work is to accelerate this process by taking advantage of new computing architectures and technologies, specially focusing in exploiting computation over shared memory multi-threading hardware. A parallel implementation of the most time consuming process in the remote sensing geometric correction has been implemented using OpenMP directives. This work compares the performance of the original serial binary versus the parallelized implementation, using several multi-threaded modern CPU architectures, discussing about the approach to nd the optimum hardware for a cost-e ective execution.
Resumo:
The New Economic Geography literature allows detailed analysis of the factors that determine the location decisions of firms in integrated markets. However, the competitive process is modelled in a rather rudimentary way, and the empirical evidence has usually been obtained from reduced-form econometric specifications. This study describes a structural model that takes into account strategic interactions between firms. We investigate the relationship between the degree of perceived competition ¿ not only from local firms but from firms in other regions ¿ and geographic concentration. The preliminary results indicate that, in aggregate terms, local firms present stronger competition than firms in other regions. Moreover, it is confirmed that greater geographical concentration of production reduces market power, due to the intensification of local competition; however, its impact on production costs is unclear.
Resumo:
The New Economic Geography literature allows detailed analysis of the factors that determine the location decisions of firms in integrated markets. However, the competitive process is modelled in a rather rudimentary way, and the empirical evidence has usually been obtained from reduced-form econometric specifications. This study describes a structural model that takes into account strategic interactions between firms. We investigate the relationship between the degree of perceived competition ¿ not only from local firms but from firms in other regions ¿ and geographic concentration. The preliminary results indicate that, in aggregate terms, local firms present stronger competition than firms in other regions. Moreover, it is confirmed that greater geographical concentration of production reduces market power, due to the intensification of local competition; however, its impact on production costs is unclear.
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.
Resumo:
Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance.
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.
Resumo:
Concurrent aims to be a different type of task distribution system compared to what MPI like system do. It adds a simple but powerful application abstraction layer to distribute the logic of an entire application onto a swarm of clusters holding similarities with volunteer computing systems. Traditional task distributed systems will just perform simple tasks onto the distributed system and wait for results. Concurrent goes one step further by letting the tasks and the application decide what to do. The programming paradigm is then totally async without any waits for results and based on notifications once a computation has been performed.
Resumo:
In this paper we analyze the existence of spatial autocorrelation at a local level in Catalonia using variables such as urbanisation economies, population density, human capital and firm entries. From a static approach, our results show that spatial autocorrelation is weak and diminishes as the distance between municipalities increases. From a dynamic approach, however, spatial autocorrelation increased over the period we analysed. These results are important from a policy point of view, since it is essential to know how economic activities are spatially concentrated or disseminated. Key words: spatial autocorrelation, municipalities. JEL classification: R110, R120
Resumo:
Much of the research on industry dynamics focuses on the interdependence between the sectorial rates of entry and exit. This paper argues that the size of firms and the reaction-adjustment period are important conditions missed in this literature. I illustrate the effects of this omission using data from the Spanish manufacturing industries between 1994 and 2001. Estimates from systems of equations models provide evidence of a conical revolving door phenomenon and of partial adjustments in the replacement-displacement of large firms. KEYWORDS: aggregation, industry dynamics, panel data, symmetry, simultaneity. JEL CLASSIFICATION: C33, C52, L60, L11
Resumo:
This paper shows how a high level matrix programming language may be used to perform Monte Carlo simulation, bootstrapping, estimation by maximum likelihood and GMM, and kernel regression in parallel on symmetric multiprocessor computers or clusters of workstations. The implementation of parallelization is done in a way such that an investigator may use the programs without any knowledge of parallel programming. A bootable CD that allows rapid creation of a cluster for parallel computing is introduced. Examples show that parallelization can lead to important reductions in computational time. Detailed discussion of how the Monte Carlo problem was parallelized is included as an example for learning to write parallel programs for Octave.