7 resultados para ATROPHY SKIN DETECTION

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

80.00% 80.00%

Publicador:

Resumo:

En aquest projecte es proposa un algorisme de detecció de pell que introdueix el veïnatge a l’hora de classificar píxels. Partim d’un espai de color invariant après a partir de múltiples vistes i introduïm la influència del veïnatge mitjançant camps aleatoris de Markov. A partir dels experiments realitzats podem concloure que la inclusió del veïnatge en el procés de classificació de píxels millora significativament els resultats de detecció.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High hydrostatic pressure is being increasingly investigated in food processing. It causes microbial inactivation and therefore extends the shelf life and enhances the safety of food products. Yeasts, molds, and vegetative cells of bacteria can be inactivated by pressures in the range of 200 to 700 MPa. Microorganisms are more or less sensitive to pressure depending on several factors such as type, strain and the phase or state of the cells. In general, Gram-positive organisms are usually more resistant than Gram-negative. High pressure processing modifies the permeability of the cell membrane, the ion exchange and causes changes in morphology and biochemical reactions, protein denaturations and inhibition of genetic mechanisms. High pressure has been used successfully to extend the shelf life of high-acid foods such as refrigerated fruit juices, jellies and jams. There is now an increasing interest in the use of this technology to extend the shelf life of low-acid foods such as different types of meat products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’objectiu principal del projecte és el de classificar escenes de carretera en funció del contingut de les imatges per així poder fer un desglossament sobre quin tipus de situació tenim en el moment. És important que fixem els paràmetres necessaris en funció de l’escenari en què ens trobem per tal de treure el màxim rendiment possible a cada un dels algoritmes. La seva funcionalitat doncs, ha de ser la d’avís i suport davant els diferents escenaris de conducció. És a dir, el resultat final ha de contenir un algoritme o aplicació capaç de classificar les imatges d’entrada en diferents tipus amb la màxima eficiència espacial i temporal possible. L’algoritme haurà de classificar les imatges en diferents escenaris. Els algoritmes hauran de ser parametritzables i fàcilment manejables per l’usuari. L’eina utilitzada per aconseguir aquests objectius serà el MATLAB amb les toolboxs de visió i xarxes neuronals instal·lades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work covers two aspects. First, it generally compares and summarizes the similarities and differences of state of the art feature detector and descriptor and second it presents a novel approach of detecting intestinal content (in particular bubbles) in capsule endoscopy images. Feature detectors and descriptors providing invariance to change of perspective, scale, signal-noise-ratio and lighting conditions are important and interesting topics in current research and the number of possible applications seems to be numberless. After analysing a selection of in the literature presented approaches, this work investigates in their suitability for applications information extraction in capsule endoscopy images. Eventually, a very good performing detector of intestinal content in capsule endoscopy images is presented. A accurate detection of intestinal content is crucial for all kinds of machine learning approaches and other analysis on capsule endoscopy studies because they occlude the field of view of the capsule camera and therefore those frames need to be excluded from analysis. As a so called “byproduct” of this investigation a graphical user interface supported Feature Analysis Tool is presented to execute and compare the discussed feature detectors and descriptor on arbitrary images, with configurable parameters and visualized their output. As well the presented bubble classifier is part of this tool and if a ground truth is available (or can also be generated using this tool) a detailed visualization of the validation result will be performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RT-PCR technique for the detection of apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV) and pear blister canker viroid (PBCV) was evaluated for health control of fruit plants from nurseries. The technique was evaluated in purified RNA and crude extracts and also in phloem collected in autumn and from young spring shoots. The results obtained for phytoplasma detection with ribosomal and non-ribosomal primers are also presented.