23 resultados para 1H and 13C NMR
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Barmumycin was isolated from an extract of the marine actinomycete Streptomyces sp. BOSC-022A and found to be cytotoxic against various human tumor cell lines. Based on preliminary one- and two-dimensional 1H- and 13C-NMR spectra, the natural compound was initially assigned the structure of macrolactone-type compound 1, which was later prepared by two different routes. However, major spectroscopic differences between isolated barmumycin and 1 led to revision of the proposed structure as E-16. Based on synthesis of this new compound, and subsequent spectroscopic comparison of it to an authentic sample of barmumycin, the structure of the natural compound was indeed confirmed as that of E-16.
Resumo:
Barmumycin was isolated from an extract of the marine actinomycete Streptomyces sp. BOSC-022A and found to be cytotoxic against various human tumor cell lines. Based on preliminary one- and two-dimensional 1H- and 13C-NMR spectra, the natural compound was initially assigned the structure of macrolactone-type compound 1, which was later prepared by two different routes. However, major spectroscopic differences between isolated barmumycin and 1 led to revision of the proposed structure as E-16. Based on synthesis of this new compound, and subsequent spectroscopic comparison of it to an authentic sample of barmumycin, the structure of the natural compound was indeed confirmed as that of E-16.
Resumo:
Els isòtops estables com a traçadors de la cadena alimentària, s'han utilitzat per caracteritzar la relació entre els consumidors i els seus aliments, ja que el fraccionament isotòpic implica una discriminació en contra de certs isòtops. Però les anàlisis d'isòtops estables (SIA), també es poden dur a terme en peixos cultivats amb dietes artificials, com la orada (Sparus aurata), la especie más cultivada en el Mediterráneo. Canvis en l'abundància natural d'isòtops estables (13C i 15N) en els teixits i les seves reserves poden reflectir els canvis en l'ús i reciclatge dels nutrients ja que els enzims catabòlics implicats en els processos de descarboxilació i desaminació mostren una preferència pels isòtops més lleugers. Per tant, aquestes anàlisis ens poden proporcionar informació útil sobre l'estat nutricional i metabòlic dels peixos. L'objectiu d'aquest projecte va ser determinar la capacitat dels isòtops estables per ser utilitzats com a marcadors potencials de la capacitat de creixement i condicions de cria de l'orada. En aquest sentit, les anàlisis d'isòtops estables s'han combinat amb altres metabòlics (activitats citocrom-c-oxidasa, COX, i citrat sintasa, CS) i els paràmetres de creixement (ARN/ADN). El conjunt de resultats obtinguts en els diferents estudis realitzats en aquest projecte demostra que el SIA, en combinació amb altres paràmetres metabòlics, pot servir com una eina eficaç per discriminar els peixos amb millor potencial de creixement, així com a marcador sensible de l'estat nutricional i d'engreix. D'altra banda, la combinació de l'anàlisi d'isòtops estables amb les eines emergents, com ara tècniques de proteòmica (2D-PAGE), ens proporciona nous coneixements sobre els canvis metabòlics que ocorren en els músculs dels peixos durant l‟increment del creixement muscular induït per l'exercici.
Resumo:
The effects of exohedral moieties and endohedral metal clusters on the isomerization of M3N@Ih-C80 products from the Prato reaction through [1,5]-sigmatropic rearrangement were systematically investigated by using three types of fulleropyrrolidine derivatives and four different endohedral metal clusters. As a result, all types of derivatives provided the same ratios of the isomers for a given trimetallic nitride template (TNT) as the thermodynamic products, thus indicating that the size of the endohedral metal clusters inside C80 was the single essential factor in determining the equilibrium between the [6,6]-isomer (kinetic product) and the [5,6]-isomer. In all the derivatives, the [6,6]- and [5,6]-Prato adducts with larger metal clusters, such as Y3N and Gd3N, were equally stable, which is in good agreement with DFT calculations. The reaction rate of the rearrangement was dependent on both the substituent of exohedral functional groups and the endohedral metal-cluster size. Further DFT calculations and 13C NMR spectroscopic studies were employed to rationalize the equilibrium in the rearrangement between the [6,6]- and [5,6]-fulleropyrrolidines
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) 13C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the 13C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the 13C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving 35,37Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the 35,37Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the 13C Larmor frequency further facilitates the polarization of the 13C nuclei by spin diffusion. Calculation of the 13C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.
Resumo:
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Most investigations into the pathogenesis of diabetic retinopathy have been concentrated on the neural retina since this is where clinical lesions are manifested. Recently, however, various abnormalities in the structural and secretory functions of retinal pigment epithelium that are essential for neuroretina survival, have been found in diabetic retinopathy. In this context, here we study the effect of hyperglycemic and hypoxic conditions on the metabolism of a human retinal pigment epithelial cell line (ARPE-19) by integrating quantitative proteomics using tandem mass tagging (TMT), untargeted metabolomics using MS and NMR, and 13C-glucose isotopic labeling for metabolic tracking. We observed a remarkable metabolic diversification under our simulated in vitro hyperglycemic conditions of diabetes, characterized increased flux through polyol pathways and inhibition of the Krebs cycle and oxidative phosphorylation. Importantly, under low oxygen supply RPE cells seem to consume rapidly glycogen storages and stimulate anaerobic glycolysis. Our results therefore pave the way to future scenarios involving new therapeutic strategies addressed to modulating RPE metabolic impairment, with the aim of regulating structural and secretory alterations of RPE. Finally, this study shows the importance of tackling biomedical problems by integrating metabolomic and proteomics results.
Resumo:
Dynamic Nuclear Polarization (DNP) is an emerging technique that could revolutionize the NMR study of small molecules at very low concentrations by the increase in sensitivity that results from transfer of polarization between electronic and nuclear spins. Although the underlying physics has been known for a long time, in the last few years there has been a lot of excitement on the chemistry and biology NMR community caused by the demonstration that the highly polarized nuclei that are prepared in solid state at very low temperatures (1-2 K) could be rapidly transferred to liquid samples at room temperature and studied in solution by conventional NMR techniques. In favorable cases several order of magnitude increases in sensitivity have been achieved. The technique is now mature enough that a commercial instrument is available. The efficiency of DNP depends on two crucial aspects: i) the efficiency of the nuclear polarization process and ii) the efficiency of the transfer from the initial solid state to the fluid state in which NMR is measured. The preferred areas of application (iii) will be dictated by situations in which the low concentration of the sample or its intrinsic low receptivity are the limiting factors .
Resumo:
Legumes such as alfalfa (Medicago sativa L.) are vital N2-fixing crops accounting for a global N2 fixation of ~35 MtNyear-1. Although enzymatic and molecular mechanisms of nodule N2 fixation are now well documented, some uncertainty remains as to whether N2 fixation is strictly coupled with photosynthetic carbon fixation. That is, the metabolic origin and redistribution of carbon skeletons used to incorporate nitrogen are still relatively undefined. Here, we conducted isotopic labelling with both 15N2 and 13C-depleted CO2 on alfalfa plants grown under controlled conditions and took advantage of isotope ratio mass spectrometry to investigate the relationship between carbon and nitrogen turn-over in respired CO2, total organic matter and amino acids. Our results indicate that CO2 evolved by respiration had an isotopic composition similar to that in organic matter regardless of the organ considered, suggesting that the turn-over of respiratory pools strictly followed photosynthetic input. However, carbon turn-over was nearly three times greater than N turn-over in total organic matter, suggesting that new organic material synthesised was less N-rich than pre-existing organic material (due to progressive nitrogen elemental dilution) or that N remobilisation occurred to sustain growth. This pattern was not consistent with the total commitment into free amino acids where the input of new C and N appeared to be stoichiometric. The labelling pattern in Asn was complex, with contrasted C and N commitments in different organs, suggesting that neosynthesis and redistribution of new Asn molecules required metabolic remobilisation. We conclude that the production of new organic material during alfalfa growth depends on both C and N remobilisation in different organs. At the plant level, this remobilisation is complicated by allocation and metabolism in the different organs. Additional keywords: carbon exchange, carbon isotopes, nitrogen fixation, nitrogen 15 isotope
Resumo:
Longline fisheries, oil spills, and offshore wind farms are some of the major threats increasing seabird mortality at sea, but the impact of these threats on specific populations has been difficult to determine so far. We tested the use of molecular markers, morphometric measures, and stable isotope (δ15N and δ13C) and trace element concentrations in the first primary feather (grown at the end of the breeding period) to assign the geographic origin of Calonectris shearwaters. Overall, we sampled birds from three taxa: 13 Mediterranean Cory's Shearwater (Calonectris diomedea diomedea) breeding sites, 10 Atlantic Cory's Shearwater (Calonectris diomedea borealis) breeding sites, and one Cape Verde Shearwater (C. edwardsii) breeding site. Assignment rates were investigated at three spatial scales: breeding colony, breeding archipelago, and taxa levels. Genetic analyses based on the mitochondrial control region (198 birds from 21 breeding colonies) correctly assigned 100% of birds to the three main taxa but failed in detecting geographic structuring at lower scales. Discriminant analyses based on trace elements composition achieved the best rate of correct assignment to colony (77.5%). Body measurements or stable isotopes mainly succeeded in assigning individuals among taxa (87.9% and 89.9%, respectively) but failed at the colony level (27.1% and 38.0%, respectively). Combining all three approaches (morphometrics, isotopes, and trace elements on 186 birds from 15 breeding colonies) substantially improved correct classifications (86.0%, 90.7%, and 100% among colonies, archipelagos, and taxa, respectively). Validations using two independent data sets and jackknife cross-validation confirmed the robustness of the combined approach in the colony assignment (62.5%, 58.8%, and 69.8% for each validation test, respectively). A preliminary application of the discriminant model based on stable isotope δ15N and δ13C values and trace elements (219 birds from 17 breeding sites) showed that 41 Cory's Shearwaters caught by western Mediterranean long-liners came mainly from breeding colonies in Menorca (48.8%), Ibiza (14.6%), and Crete (31.7%). Our findings show that combining analyses of trace elements and stable isotopes on feathers can achieve high rates of correct geographic assignment of birds in the marine environment, opening new prospects for the study of seabird mortality at sea.
Resumo:
We investigated trophic ecology variation among colonies as well as sex- and age-related differences in the diet of the southern giant petrel Macronectes giganteus, a long-lived seabird that is sexually dimorphic in size. We measured stable isotopes (δ13C, δ15N) in blood samples collected during breeding at Bird Island (South Georgia, Antarctica) in 1998 and at 2 colonies in the Argentinean area of Patagonia in 2000 and 2001. Individuals from South Georgia showed lower δ13C and δ15N values than those in Patagonia, as expected from the more pelagic location and the short length of the Antarctic food web. Males and females showed significant differences in the isotopic signatures at both localities. These differences agree with the sexual differences in diet found in previous studies, which showed that both sexes rely mainly on penguin and seal carrion, but females also feed extensively on marine prey, such as fish, squid and crustaceans. However, males from Patagonia showed significantly higher δ15N and δ13C values than females did, and the reverse trend was observed at South Georgia. This opposite trend is probably related to the different trophic level of carrion between locations: whereas penguins and pinnipeds in Patagonia rely mainly on fish and cephalopods, in South Georgia they rely mainly on krill. Stable isotope values of male and female chicks in Patagonia did not differ; both attained high values, similar to adult males and higher than adult females, suggesting that parents do not provision their single offspring differently in relation to sex; however, they seem to provide offspring with a higher proportion of carrion, probably of higher quality, and more abundant food, than they consume themselves. Stable isotopes at South Georgia were not affected by age of adults. We have provided new information on intraspecific segregation in the diet in a seabird species and have also underlined the importance of considering food web structure when studying intraspecific variability in trophic ecology.
Resumo:
Long-lived states (LLS) are relaxation-favoured eigenstates of J-coupled magnetic nuclei. LLS were measured, along with classical 1H and 15 N relaxation rate constants, in aminoacids of the N-terminal Unique domain of the c-Src kinase (USrc), which is disordered in vitro under physiological conditions. The relaxation rates of LLS are a probe for motions and interactions in biomolecules. LLS of the aliphatic protons of glycines, with lifetimes ca. four times longer than their spin-lattice relaxation times, are reported for the first time in an intrinsically disordered protein domain (IDP). LLS relaxation experiments were integrated with 2D spectroscopy methods, further adapting them for studies on proteins.
Resumo:
Feeding ecology and geographic location are 2 major factors influencing animal stable isotope signatures, but their relative contributions are poorly understood, which limits the usefulness of stable isotope analysis in the study of animal ecology. To improve our knowledge of the main sources of isotopic variability at sea, we determined δ15N and δ13C signatures in the first primary feather of adult birds from 11 Procellariiform species (n = 609) across 16 northeast Atlantic localities, from Cape Verde (20°N) to Iceland (60°N). Post-breeding areas (where the studied feather is thought to be grown) were determined using light-level geolocation for 6 of the 11 species. Isotopic variability was geographically unstructured within the mid-northeast Atlantic (Macaronesian archipelagos), but trophically structured according to species and regardless of the breeding location, presumably as a result of trophic segregation among species. Indeed, the interspecific isotopic overlap resulting from combining δ15N and δ13C signatures of seabirds was low, which suggests that most species exploited exclusive trophic resources consistently across their geographic range. Species breeding in north temperate regions (Iceland, Scotland and Northern Ireland) showed enriched δ15N compared to the same or similar species breeding in tropical and subtropical regions, suggesting some differences in baseline levels between these regions. The present study illustrates a noticeable trophic segregation of northeast Atlantic Procellariiformes. Our results show that the isotopic approach has limited applicability for the study of animal movements in the northeast Atlantic at a regional scale, but is potentially useful for the study of long-distance migrations between large marine systems